Certain styrenic thermoplastic block copolymer elastomers can be processed to exhibit anisotropic mechanical properties which may be desirable for imitating biological tissues. The ex-vivo hemocompatibility of four triblock (hard-soft-hard) copolymers with polystyrene hard blocks and polyethylene, polypropylene, polyisoprene, polybutadiene or polyisobutylene soft blocks are tested using the modified Chandler loop method using fresh human blood and direct contact cell proliferation of fibroblasts upon the materials. The hemocompatibility and durability performance of a heparin coating is also evaluated. Measures of platelet and coagulation cascade activation indicate that the test materials are superior to polyester but inferior to expanded polytetrafluoroethylene and bovine pericardium reference materials. Against inflammatory measures the test materials are superior to polyester and bovine pericardium. The addition of a heparin coating results in reduced protein adsorption and ex-vivo hemocompatibility performance superior to all reference materials, in all measures. The tested styrenic thermoplastic block copolymers demonstrate adequate performance for blood contacting applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690832 | PMC |
http://dx.doi.org/10.1007/s10856-015-5628-7 | DOI Listing |
Macromol Rapid Commun
January 2025
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.
View Article and Find Full Text PDFChemistry
January 2025
Southern University of Science and Technology, Chemistry, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, CHINA.
Poly(p-phenylenevinylene) (PPV) is a classic semiconducting π-conjugated polymers with outstanding optical and electronic properties, which shows important applications in the fields of optoelectronic, such as organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs). In the working process of the device, the microstate of PPV decides its property. Therefore, it is significant to achieve ordered morphologies based on PPV at micro scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!