A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo quantification of the [(11)C]DASB binding in the normal canine brain using positron emission tomography. | LitMetric

Background: [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB) is currently the mostly used radiotracer for positron emission tomography (PET) quantitative studies of the serotonin transporter (SERT) in the human brain but has never been validated in dogs. The first objective was therefore to evaluate normal [(11)C]DASB distribution in different brain regions of healthy dogs using PET. The second objective was to provide less invasive and more convenient alternative methods to the arterial sampling-based kinetic analysis.

Results: A dynamic acquisition of the brain was performed during 90 min. The PET images were coregistered with the magnetic resonance images taken prior to the study in order to manually drawn 20 regions of interest (ROIs). The highest radioactivity concentration of [(11)C]DASB was observed in the hypothalamus, raphe nuclei and thalamus and lowest levels in the parietal cortex, occipital cortex and cerebellum. The regional radioactivity in those 20 ROIs was quantified using the multilinear reference tissue model 2 (MRTM2) and a semi-quantitative method. The values showed least variability between 40 and 60 min and this time interval was set as the optimal time interval for [(11)C]DASB quantification in the canine brain. The correlation (R(2)) between the MRTM2 and the semi-quantitative method using the data between 40 and 60 min was 99.3% (two-tailed p-value < 0.01).

Conclusions: The reference tissue models and semi-quantitative method provide a more convenient alternative to invasive arterial sampling models in the evaluation of the SERT of the normal canine brain. The optimal time interval for static scanning is set at 40 to 60 min after tracer injection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690221PMC
http://dx.doi.org/10.1186/s12917-015-0622-3DOI Listing

Publication Analysis

Top Keywords

canine brain
8
positron emission
8
emission tomography
8
mrtm2 semi-quantitative
8
semi-quantitative method
8
time interval
8
[11c]dasb
5
brain
5
vivo quantification
4
quantification [11c]dasb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!