Evaluating the inhibitory potential of Withania somnifera on platelet aggregation and inflammation enzymes: An in vitro and in silico study.

Pharm Biol

f Department of Studies in Biotechnology, Biochemistry and Microbiology , Pooja Bhagavat Memorial Mahajana Post Graduate Centre, Mahajana Research Foundation, Affiliated to University of Mysore, Mysore , Karnataka , India.

Published: September 2016

Context Withania somnifera (L.) Dunal is traditionally used for treating various ailments, but lacks scientific evaluation. Objective This study evaluates Withania somnifera (WS) for its effect on platelet activity and inflammatory enzymes. Materials and methods Aqueous and ethanolic (1:1) leaf extracts were subjected to in vitro indirect haemolytic activity using Naja naja venom, human platelet aggregation was quantified for lipid peroxidation using arachidonic acid (AA) as agonist and 5-lipoxygenase (5-LOX) levels were determined using standard spectrometric assays. Further, molecular docking was performed by the ligand fit method using molegro software package (Molegro ApS, Aarhus, Denmark). Results The study found that aqueous and ethanol extracts have very negligible effect (15%) with an IC50 value of 13.8 mg/mL on PLA2 from Naja naja venom. Further, extracts of WS also had very little effect (18%) with an IC50 value of 16.6 mg/mL on malondialdehyde (MDA) formation. However, a 65% inhibition of 5-LOX with an IC50 value of 0.92 mg/mL was observed in 1:1 ethanol extracts. The same was evident from SAR model with the active ingredient withaferin A binding predominantly on Phe 77, Tyr 98, Arg 99, Asp 164, Leu 168, Ser 382, Arg 395, Tyr 396 and Tyr 614 with an atomic contact energy value of -128.96 compared to standard phenidone (-103.61). Thus, the current study validates the application of WS for inflammatory diseases. Conclusion This study reveals the inhibitory potential of W. somnifera on inflammatory enzymes and platelet aggregation. Thus, WS can serve as a newer, safer and affordable medicine for inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13880209.2015.1123729DOI Listing

Publication Analysis

Top Keywords

withania somnifera
12
platelet aggregation
12
inhibitory potential
8
somnifera platelet
8
inflammatory enzymes
8
naja naja
8
naja venom
8
ethanol extracts
8
inflammatory diseases
8
study
5

Similar Publications

Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P.

View Article and Find Full Text PDF

Background: Understanding the evolutionary history of plants and accurately identifying biologically important species and their families is crucial for the herbal and Ayurvedic industries. The genetic approach by DNA barcoding plays a pivotal role in accurate species identification, authentication and quality control. Due to various therapeutic properties, Withania somnifera has been used worldwide in traditional systems of medicine for centuries including Ayurveda and Unani.

View Article and Find Full Text PDF

Sunlight-driven photocatalytic degradation of industrial dyes using Withania somnifera decorated MnO nanoparticles.

Discov Nano

December 2024

Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.

Article Synopsis
  • The study introduces a quick and eco-friendly method to create manganese oxide (MnO) nanoparticles using Ashwagandha extract, with noticeable color change signaling synthesis.
  • Various analytical techniques confirmed the formation and properties of the nanoparticles, which demonstrated high photocatalytic efficiency in breaking down pollutants when exposed to sunlight.
  • The process is simple, does not require harmful chemicals, and has potential applications in wastewater treatment, promoting the development of sustainable nanomaterials.
View Article and Find Full Text PDF

: This study investigates the effectiveness of an herbal formulation, STRESSLESS (ST-65), which combines ashwagandha () and bacopa (), on SH-SY5Y human neuroblastoma cells. Given the rising interest in natural compounds for neuroprotection and stress alleviation, we aimed to explore the cellular and molecular effects of this formulation. : Utilizing a nuclear magnetic resonance (NMR) metabolomic approach and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS), we identified key bioactive compounds in ST-65, including withanolides from ashwagandha and bacosides from bacopa.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ashwagandha (Withania somnifera (L.) Dunal) root or whole-plant extracts are used to treat anxiety, insomnia, and other nervous system disturbances.

Aim Of The Study: We evaluated the neuroprotective and antidepressant effects of ashwagandha root extract (ARE) on corticosterone-exposed HT-22 cells and unpredictable chronic mild stress (UCMS)-challenged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!