Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition.

J Hered

From the US Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414 (Branham); Department of Biology, Washington University, St. Louis, MO 63130 (Wright); Integrative Biology Department, University of Texas at Austin, Austin, TX 78712 (Branham, Reba, and Linder).

Published: May 2016

The renewable source of highly reduced carbon provided by plant triacylglycerols (TAGs) fills an ever increasing demand for food, biodiesel, and industrial chemicals. Each of these uses requires different compositions of fatty acid proportions in seed oils. Identifying the genes responsible for variation in seed oil composition in nature provides targets for bioengineering fatty acid proportions optimized for various industrial and nutrition goals. Here, we characterized the seed oil composition of 391 world-wide, wild accessions of Arabidopsis thaliana, and performed a genome-wide association study (GWAS) of the 9 major fatty acids in the seed oil and 4 composite measures of the fatty acids. Four to 19 regions of interest were associated with the seed oil composition traits. Thirty-four of the genes in these regions are involved in lipid metabolism or transport, with 14 specific to fatty acid synthesis or breakdown. Eight of the genes encode transcription factors. We have identified genes significantly associated with variation in fatty acid proportions that can be used as a resource across the Brassicaceae. Two-thirds of the regions identified contain candidate genes that have never been implicated in lipid metabolism and represent potential new targets for bioengineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885229PMC
http://dx.doi.org/10.1093/jhered/esv100DOI Listing

Publication Analysis

Top Keywords

seed oil
20
oil composition
16
fatty acid
16
acid proportions
12
genome-wide association
8
association study
8
arabidopsis thaliana
8
variation seed
8
targets bioengineering
8
fatty acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!