Solid-Phase Synthesis of Water-Soluble Helically Folded Hybrid α-Amino Acid/Quinoline Oligoamides.

J Org Chem

Université de Bordeaux, CBMN (UMR5248) , Institut Européen de Chimie et Biologie, 2 Rue Escarpit, 33600 Pessac, France.

Published: February 2016

We report here a solid phase synthesis methodology that allows the incorporation of α-amino acids (X) into quinoline (Q) oligoamide foldamer sequences. Water-soluble hybrid oligoamides based on the XQ2 trimer repeat motif were shown to adopt helical conformations presenting α-amino acid side chains in a predictable linear array on one face of the helix. In contrast, sequences based on the XQ dimer motif expressed less well-defined behavior, most likely due to local conformational variability precluding long-range order. Also presented is a full structural investigation by NMR of a dodecameric XQ2-type foldamer containing four different amino acid residues (Lys, Ala, Asp, and Ser).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b02671DOI Listing

Publication Analysis

Top Keywords

solid-phase synthesis
4
synthesis water-soluble
4
water-soluble helically
4
helically folded
4
folded hybrid
4
hybrid α-amino
4
α-amino acid/quinoline
4
acid/quinoline oligoamides
4
oligoamides report
4
report solid
4

Similar Publications

Background: Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a widely used class of synthetic chemicals that pose a significant global environmental and health threat due to their persistent and bioaccumulation toxicity caused by strong C-F bonds in their structures. PFAS usually exist in trace concentrations in environmental water bodies, which poses great challenges for environmental analysis. In this study, environmentally friendly cellulose was modified with polyaniline through in situ oxidative polymerization, and used as the filter paper for solid-phase extracting 23 PFAS in water.

View Article and Find Full Text PDF

Dual-Asymmetric Solid Additive Enables Eco-friendly All-Polymer Solar Cells with Over 19% Efficiency and Excellent Stability.

Angew Chem Int Ed Engl

January 2025

Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.

The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!