Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis.

Biochem Biophys Res Commun

Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Moyzesova 61, 90028 Ivanka pri Dunaji, Slovak Republic. Electronic address:

Published: January 2016

The toxic effect of overloaded lipids on cell physiology and viability was described in various organisms. In this study we focused on the potential lipotoxicity of squalene, a linear triterpene synthesized in eukaryotic cells as an intermediate in sterol biosynthesis. Squalene toxicity was studied in the yeast Saccharomyces cerevisiae, a model unicellular eukaryote established in lipotoxicity studies. Squalene levels in yeast are typically low but its accumulation can be induced under specific conditions, e.g. by inhibition of squalene monooxygenase with the antimycotic terbinafine. At higher levels squalene is stored in lipid droplets. We demonstrated that low doses of terbinafine caused severe impairment of growth and loss of viability of the yeast mutant dga1Δ lro1Δ are1Δ are2Δ unable to form lipid droplets and that these defects were linked to squalene accumulation. The hypersensitivity of the lipid droplet-less mutant to terbinafine was alleviated by decreasing squalene accumulation with low doses of squalene synthase inhibitor zaragozic acid. Our results proved that accumulated squalene is lipotoxic to yeast cells if it cannot be efficiently sequestered in lipid droplets. This supports the hypothesis about the role of squalene in the fungicidal activity of terbinafine. Squalene toxicity may represent also a limiting factor for production of this high-value lipid in yeast.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.12.050DOI Listing

Publication Analysis

Top Keywords

squalene
12
lipid droplets
12
squalene lipotoxic
8
lipotoxic yeast
8
yeast cells
8
squalene toxicity
8
low doses
8
squalene accumulation
8
yeast
6
lipid
6

Similar Publications

Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.

View Article and Find Full Text PDF

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

Disturbing Cholesterol/Sphingolipid Metabolism by Squalene Epoxidase Arises Crizotinib Hepatotoxicity.

Adv Sci (Weinh)

January 2025

Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Metabolic disorders have been identified as one of the causes of drug-induced liver injury; however, the direct regulatory mechanism regarding this disorder has not yet been clarified. In this study, a single regulatory mechanism of small molecule kinase inhibitors, with crizotinib as the representative drug is elucidated. First, it is discovered that crizotinib induced aberrant lipid metabolism and apoptosis in the liver.

View Article and Find Full Text PDF

Changes in key volatile components associated with leaf quality of Roxb. alongside growth duration.

Food Chem X

January 2025

Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops/ Key Laboratory of Genetic Resource Utilization of Spice and Beverage Crops, Ministry of Agriculture and Rural Affairs, Wanning, Hainan 571533, China.

Pandan ( Roxb.) are one of the traditional food materials in Southeast Asian countries. However, there has long been a lack of understanding of the differences in volatile organic compounds (VOCs) of leaves at different growth periods.

View Article and Find Full Text PDF

The analysis of mineral oil aromatic hydrocarbons (MOAH) in vegetable oils is currently associated with high uncertainty due to various factors ranging from sample preparation to data interpretation. One significant factor is the coelution of biogenic compounds of terpenic origin with the MOAH fraction during chromatographic analysis. The common purification method is epoxidation, a chemical reaction that changes the polarity of the interferences, allowing their separation from MOAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!