Interaction of α-synuclein with biomembranes in Parkinson's disease--role of cardiolipin.

Prog Lipid Res

Dept. of Physiology and Biochemistry, University of Malta, Msida, Malta. Electronic address:

Published: January 2016

One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer. Moreover, we assert that the interaction of αS with a liquid-disordering phospholipid uniquely enriched in mitochondrial membranes, namely cardiolipin (1,3-diphosphatidyl-sn-glycerol, CL), helps target the αS oligomeric complexes intracellularly to mitochondria. Binding mediated by CL may thus represent an important pathomechanism by which cytosolic αS could physically associate with mitochondrial membranes and disrupt their integrity. Impaired mitochondrial function culminates in a cellular bioenergetic crisis and apoptotic death. To conclude, we advocate the accelerated discovery of new drugs targeting this pathway in order to restore mitochondrial function in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2015.10.005DOI Listing

Publication Analysis

Top Keywords

mitochondrial membranes
8
mitochondrial function
8
αs
5
interaction α-synuclein
4
α-synuclein biomembranes
4
biomembranes parkinson's
4
parkinson's disease--role
4
disease--role cardiolipin
4
cardiolipin key
4
key molecular
4

Similar Publications

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Mitochondrial fission and fusion in neurodegenerative diseases:Ca signalling.

Mol Cell Neurosci

January 2025

Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:

Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!