Stem cells from the adult hair follicle bulge can differentiate into neurons and glia, which is advantageous for the development of an autologous cell-based therapy for neurological diseases. Consequently, bulge stem cells from plucked hair may increase opportunities for personalized neuroregenerative therapy. Hairs were plucked from the scalps of healthy donors, and the bulges were cultured without prior tissue treatment. Shortly after outgrowth from the bulge, cellular protein expression was established immunohistochemically. The doubling time was calculated upon expansion, and the viability of expanded, cryopreserved cells was assessed after shear stress. The neuroglial differentiation potential was assessed from cryopreserved cells. Shortly after outgrowth, the cells were immunopositive for nestin, SLUG, AP-2α and SOX9, and negative for SOX10. Each bulge yielded approximately 1 × 10(4) cells after three passages. Doubling time was 3.3 (±1.5) days. Cellular viability did not differ significantly from control cells after shear stress. The cells expressed class III β-tubulin (TUBB3) and synapsin-1 after 3 weeks of neuronal differentiation. Glial differentiation yielded KROX20- and MPZ-immunopositive cells after 2 weeks. We demonstrated that human hair follicle bulge-derived stem cells can be cultivated easily, expanded efficiently and kept frozen until needed. After cryopreservation, the cells were viable and displayed both neuronal and glial differentiation potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023559 | PMC |
http://dx.doi.org/10.1007/s10616-015-9938-x | DOI Listing |
Immunology
December 2024
Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA.
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Department of neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
Aims: This study aims to elucidate the therapeutic effects and underlying mechanisms of exosomes derived from Heme oxygenase 1 (HO-1)-overexpressing human umbilical cord mesenchymal stem cells (Exo) in a subarachnoid hemorrhage (SAH) mouse model.
Methods: In this study, exosomes were identified using Western blotting, particle analysis, and transmission electron microscopy. The effect of Exo and Exo on the neurological function of SAH mice was assessed using the Garcia scoring system, Beam balance, Rotarod test, and Morris water maze test.
Skelet Muscle
December 2024
School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
Background: Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
Obesity is a multifactorial condition influenced by genetic, environmental, and microbiome-related factors. The gut microbiome plays a vital role in maintaining intestinal health, increasing mucus creation, helping the intestinal epithelium mend, and regulating short-chain fatty acid (SCFA) production. These tasks are vital for managing metabolism and maintaining energy balance.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA. Electronic address:
Mitogen-activated protein kinase kinase kinase 4 (MAP3K4) promotes fetal and placental growth and development, with MAP3K4 kinase inactivation resulting in placental insufficiency and fetal growth restriction. MAP3K4 promotes key signaling pathways including JNK, p38, and PI3K/Akt, leading to activation of CREB-binding protein. MAP3K4 kinase inactivation results in loss of these pathways and gain of histone deacetylase 6 (HDAC6) expression and activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!