Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM).

Z Med Phys

Medical Physics Group, IDIR, Jena University Hospital - Friedrich Schiller University Jena, Germany; Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Germany.

Published: March 2016

Quantitative Susceptibility Mapping (QSM) is a novel MRI based technique that relies on estimates of the magnetic field distribution in the tissue under examination. Several sophisticated data processing steps are required to extract the magnetic field distribution from raw MRI phase measurements. The objective of this review article is to provide a general overview and to discuss several underlying assumptions and limitations of the pre-processing steps that need to be applied to MRI phase data before the final field-to-source inversion can be performed. Beginning with the fundamental relation between MRI signal and tissue magnetic susceptibility this review covers the reconstruction of magnetic field maps from multi-channel phase images, background field correction, and provides an overview of state of the art QSM solution strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.zemedi.2015.10.002DOI Listing

Publication Analysis

Top Keywords

mri phase
12
magnetic field
12
quantitative susceptibility
8
susceptibility mapping
8
mapping qsm
8
field distribution
8
foundations mri
4
phase
4
phase imaging
4
imaging processing
4

Similar Publications

Purpose: To investigate the predictive value of MRI-based radiomics models for the recovery of visual acuity after 12 months in patients with acute phase MOG-optic neuritis(MOG-ON).

Materials And Methods: Clinical and MRI imaging data were collected consecutively from January 2021 to April 2022 from patients with acute stage MOG-ON, and the visual acuity of patients were followed up after 12 months. After stratified random sampling, patients were divided into training and test sets, and prediction models based on CE-T1WI, FS-T2WI, and combined CE-T1WI and FS-T2WI were developed.

View Article and Find Full Text PDF

A young man in his 30s presented to us with multiple episodes of syncope and exertional dyspnoea for the last 2 weeks. He was diagnosed with squamous cell carcinoma of the lower one-third of the oesophagus in 2021 for which he was treated with neoadjuvant chemoradiotherapy, followed by McKeown oesophagectomy. At 2-year follow-up, he had developed a soft tissue swelling in the scalp, which was diagnosed as a tumour recurrence and radiotherapy was initiated.

View Article and Find Full Text PDF

Background And Purpose: This study assessed the treatment time of online adaptive (i.e. Adapt-to-Shape, ATS) and virtual couch shift (i.

View Article and Find Full Text PDF

The effect of deep magnetic stimulation on the cardiac-brain axis post-sleep deprivation: a pilot study.

Front Neurosci

January 2025

Department of Evidence-Based Medicine and Social Medicine, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.

Introduction: Sleep deprivation (SD) significantly disrupts the homeostasis of the cardiac-brain axis, yet the neuromodulation effects of deep magnetic stimulation (DMS), a non-invasive and safe method, remain poorly understood.

Methods: Sixty healthy adult males were recruited for a 36-h SD study, they were assigned to the DMS group or the control group according to their individual willing. All individuals underwent heart sound measurements and functional magnetic resonance imaging scans at the experiment's onset and terminal points.

View Article and Find Full Text PDF

In this work, we introduce spatial and chemical saturation options for artefact reduction in magnetic resonance fingerprinting (MRF) and assess their impact on T and T mapping accuracy. An existing radial MRF pulse sequence was modified to enable spatial and chemical saturation. Phantom experiments were performed to demonstrate flow artefact reduction and evaluate the accuracy of the T and T maps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!