Enhancement of azo dye decolourization in a MFC-MEC coupled system.

Bioresour Technol

CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China.

Published: February 2016

Microbial fuel cells (MFCs) have shown the potential for azo dye decolourization. In this study, a MFC-MEC (microbial electrolysis cell) coupled system was established in order to enhance azo dye decolourization, and the influence of several key factors on reactor performance was evaluated. Moreover, a theoretical analysis was conducted to find the essential preconditions for successfully develop this MFC-MEC coupled system. The results indicate that the decolourization rate in the coupled system had a 36.52-75.28% improvement compared to the single MFC. Anodic acetate concentration of both the MFC and the MEC showed a positive effect on azo dye decolourization, while the cathodic pH of both MEC and MFC in the range of 7.0-10.3 had an insignificant impact on reactor performance in the coupled system. The theoretical analysis reveals that the MFC should have higher short-circuit electricity generation than the MEC before connecting together for a successful coupled system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.11.079DOI Listing

Publication Analysis

Top Keywords

coupled system
24
azo dye
16
dye decolourization
16
mfc-mec coupled
8
reactor performance
8
theoretical analysis
8
coupled
6
system
6
decolourization
5
enhancement azo
4

Similar Publications

Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.

Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.

View Article and Find Full Text PDF

Introduction: As climate change advances, the looming threat of dengue fever, intricately tied to rising temperatures, intensifies, posing a substantial and enduring public health challenge in the Philippines. This study aims to investigate the historical and projected excess dengue disease burden attributable to temperature to help inform climate change policies, and guide resource allocation for strategic climate change and dengue disease interventions.

Methods: The study utilized established temperature-dengue risk functions to estimate the historical dengue burden attributable to increased temperatures.

View Article and Find Full Text PDF

Background: Patients with arrhythmogenic cardiomyopathy (ACM) due to pathogenic variants in , the gene for the desmosomal protein plakophilin-2, are being enrolled in gene therapy trials designed to replace the defective allele via adeno-associated viral (AAV) transduction of cardiac myocytes. Evidence from experimental systems and patients indicates that ventricular myocytes in ACM have greatly reduced electrical coupling at gap junctions and reduced Na current density. In previous AAV gene therapy trials, <50% of ventricular myocytes have generally been transduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!