Correlations between quantitative fat-water magnetic resonance imaging and computed tomography in human subcutaneous white adipose tissue.

J Med Imaging (Bellingham)

Vanderbilt University , Institute of Imaging Science, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, Tennessee 37235, United States ; Vanderbilt University , School of Medicine, Department of Radiology and Radiological Sciences, 1161 21st Avenue South, Medical Center North, CCC-1121, Nashville, Tennessee 37235, United States.

Published: October 2015

Beyond estimation of depot volumes, quantitative analysis of adipose tissue properties could improve understanding of how adipose tissue correlates with metabolic risk factors. We investigated whether the fat signal fraction (FSF) derived from quantitative fat-water magnetic resonance imaging (MRI) scans at 3.0 T correlates to CT Hounsfield units (HU) of the same tissue. These measures were acquired in the subcutaneous white adipose tissue (WAT) at the umbilical level of 21 healthy adult subjects. A moderate correlation exists between MRI- and CT-derived WAT values for all subjects, [Formula: see text], [Formula: see text], with a slope of [Formula: see text], (95% CI [Formula: see text]), indicating that a decrease of 1 HU equals a mean increase of 0.38% FSF. We demonstrate that FSF estimates obtained using quantitative fat-water MRI techniques correlate with CT HU values in subcutaneous WAT, and therefore, MRI-based FSF could be used as an alternative to CT HU for assessing metabolic risk factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684077PMC
http://dx.doi.org/10.1117/1.JMI.2.4.046001DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
[formula text]
16
quantitative fat-water
12
fat-water magnetic
8
magnetic resonance
8
resonance imaging
8
subcutaneous white
8
white adipose
8
metabolic risk
8
risk factors
8

Similar Publications

Obesity can change the immune microenvironment of adipose tissue and induce inflammation. This study is dedicated to exploring the internal mechanism by which different intensities of exercise reprogram the immune microenvironment of epididymal adipose tissue in nutritionally obese mice. C57BL/6J male obese mouse models were constructed by high-fat diet, which were respectively obese control group (OC), moderate intensity continuous exercise group (HF-M), high intensity continuous exercise group (HF-H) and high intensity intermittent exercise group (HF-T).

View Article and Find Full Text PDF

Feline Idiopathic Cystitis (FIC), is a chronic lower urinary tract condition in cats analogous to PBS/IC in women, which presents significant treatment challenges due to its idiopathic nature. Recent advancements in regenerative medicine highlight the potential of Adipose Tissue-Derived Stem Cells (ADSCs), particularly through their secretome, which includes mediators, bioactive molecules, and extracellular vesicles (EVs). Notably, exosomes, a subset of EVs, facilitate cell-to-cell communication and, when derived from ADSCs, exhibit anti-inflammatory properties and contribute to tissue regeneration.

View Article and Find Full Text PDF

Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity.

View Article and Find Full Text PDF

Background: Intra-pancreatic fat deposition (IPFD) is linked to metabolic and pancreatic diseases. MRI, while precise, is not cost-effective for routine IPFD screening, highlighting the need for accessible biomarkers. This study aims to analyze the relationships among serum lipid profiles, lipoprotein ratios, and IPFD, with a focus on sex differences.

View Article and Find Full Text PDF

PPARα-ERRα crosstalk mitigates metabolic dysfunction-associated steatotic liver disease progression.

Metabolism

December 2024

Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium. Electronic address:

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!