Background: Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure.

Findings: Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure.

Conclusion: Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684554PMC
http://dx.doi.org/10.1186/s40064-015-1592-4DOI Listing

Publication Analysis

Top Keywords

atmospheric pressure
36
patients migraine
20
developed migraine
16
migraine
14
atmospheric
12
standard atmospheric
12
pressure
9
fluctuations atmospheric
8
low atmospheric
8
induces migraine
8

Similar Publications

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

The Site of Protonation Affects the Dissociation of Protonated α- and β-Pinene Ions.

Rapid Commun Mass Spectrom

March 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.

Rationale: In electrospray ionization and atmospheric pressure chemical ionization, the protonation site directly guides the ion's dissociation. But what if the site of protonation is ambiguous? In this study, we explored the unimolecular reactions of protonated α- and β-pinene ions with a combination of tandem mass spectrometry and theory. Each has multiple potential protonation sites that influence their chemistry.

View Article and Find Full Text PDF

Is the Reaction Rate Coefficient for OH + HO → HO + O Dependent on Water Vapor?

JACS Au

December 2024

Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

A critical reaction affecting the oxidation chemistry in the middle-to-upper atmosphere occurs between hydroxyl (OH) and hydroperoxyl (HO). The reaction rate coefficient for OH + HO → HO + O, here called , has challenged laboratory kineticists for 50 years. However, several measurements from the past 30 years had approached a rough consensus until the publication of a new study that examined, for the first time, the water vapor dependence of this reaction.

View Article and Find Full Text PDF

Plasma flows with enhanced dynamic pressure, known as magnetosheath jets, are often found downstream of collisionless shocks. As they propagate through the magnetosheath, they interact with the surrounding plasma, shaping its properties, and potentially becoming geoeffective upon reaching the magnetopause. In recent years (since 2016), new research has produced vital results that have significantly enhanced our understanding on many aspects of jets.

View Article and Find Full Text PDF

In this study, long-term and continuous monitoring of atmospheric radon concentration, temperature, air pressure, and humidity was conducted at China Jinping Underground Laboratory. The impacts of temperature, humidity, and air pressure on radon concentration in the experimental environment were specifically examined, along with the potential interactions among these factors. Moreover, Radon data were denoised using Singular Spectrum Analysis (SSA) to reveal factors that might influence changes in radon concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!