Homing of stem cells to the sites of injury is crucial for tissue regeneration. Stromal derived factor 1 (SDF-1) is among the most important chemokines recruiting these cells. Unexpectedly, our previous experimental data on mouse models of acute kidney injury showed that SDF-1 has a declining trend following ischemic kidney insult. To describe this unforeseen observation, a stochastic Petri net model of SDF-1 regulation in the hypoxia pathway was constructed based on main related components extracted from literature. Using this strategy, predictions regarding the underlying mechanisms of SDF-1 kinetics are generated and a novel incoherent feed forward loop regulating SDF-1 expression is proposed. The computational approach suggested here can be exploited to propose novel therapies for debilitating disorders such as kidney injury.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2015.2509475DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
stochastic petri
8
petri net
8
hypoxia pathway
8
novel incoherent
8
sdf-1 expression
8
acute kidney
8
sdf-1
6
net modeling
4
modeling hypoxia
4

Similar Publications

A case of neuron-derived neurotrophic factor-positive, syphilis-related membranous nephropathy that achieved spontaneous remission.

CEN Case Rep

December 2024

Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Neuron-derived neurotrophic factor (NDNF) was discovered as a target antigen in membranous nephropathy (MN) caused by syphilis. However, there have been few reports of NDNF-positive MN in Japan. A 19-year-old female patient was admitted to our hospital with nephrotic syndrome and acute kidney injury.

View Article and Find Full Text PDF

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Vancomycin administration and AUC/MIC in patients with acute kidney injury on hemodialysis (HD): randomized clinical trial.

Sci Rep

December 2024

Internal Medicine Department - Nephrology, Botucatu School of Medicine, University São Paulo State-UNESP, District of Rubiao Junior, Botucatu, Sao Paulo, Brazil.

The pharmacokinetics and pharmacodynamics (PK/PD) of vancomycin change during HD, increasing the risk of subtherapeutic concentrations. The aim of this study was to evaluate during and after the conventional and prolonged hemodialysis sessions to identify the possible risk of the patient remaining without adequate antimicrobial coverage during therapy. Randomized, non-blind clinical trial, including critically ill adults with septic AKI on conventional (4 h) and prolonged HD (6 and 10 h) and using vancomycin for at least 72 h.

View Article and Find Full Text PDF

Sepsis is defined as a dysfunctional, life-threatening response to infection leading to multiorgan dysfunction and failure. During the past decade, studies have highlighted the relationship between sepsis and aging. However, the role of aging-related mechanisms in the progression and prognosis of sepsis remains unclear.

View Article and Find Full Text PDF

Oxidative stress and inflammation are indispensable components of ischemia-reperfusion (IR) injury. In this study, we investigated the effects of low and high doses of caftaric acid (CA) on reducing kidney and remote organ damage induced by IR. We divided Wistar rats into four groups: sham, IR, low (40 mg/kg body weight (BW)), and high (80 mg/kg BW) CA groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!