Gambogic acid (GA) is a naturally derived potent anticancer agent with extremely poor aqueous solubility. In the present study, positively charged PEGylated liposomal formulation of GA (GAL) was developed for parenteral delivery for the treatment of triple-negative breast cancer (TNBC). The GAL was formulated with a particle size of 107.3 ± 10.6 nm with +32 mV zeta potential. GAL showed very minimal release of GA over 24 h period confirming the non-leakiness and stability of liposomes. In vitro cytotoxicity assays showed similar cell killing with GA and GAL against MDA-MB-231 cells but significantly higher inhibition of HUVEC growth was observed with GAL. Furthermore, GAL significantly (p < 0.05) inhibited the MDA-MB-231 orthotopic xenograft tumor growth with >50% reduction of tumor volume and reduction in tumor weight by 1.7-fold and 2.2-fold when compared to GA and controls, respectively. Results of western blot analysis indicated that GAL significantly suppressed the expression of apoptotic markers, bcl2, cyclinD1, survivin and microvessel density marker-CD31 and increased the expression of p53 and Bax compared to GA and control. Collectively, these data provide further support for the potential applications of cationic GAL in its intravenous delivery and its significant role in inhibiting angiogenesis against TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5024788PMC
http://dx.doi.org/10.3109/10717544.2015.1124472DOI Listing

Publication Analysis

Top Keywords

gambogic acid
8
treatment triple-negative
8
triple-negative breast
8
breast cancer
8
gal
8
reduction tumor
8
tumor neovasculature-targeted
4
neovasculature-targeted cationic
4
cationic pegylated
4
pegylated liposomes
4

Similar Publications

Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).

View Article and Find Full Text PDF

Evaluation of active substances in gamboge and their mechanisms for the treatment of colorectal cancer by UPLC-MS/MS integrated with network pharmacology.

Anal Biochem

March 2025

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China. Electronic address:

Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.

View Article and Find Full Text PDF

Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells.

Biochem Pharmacol

December 2024

Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. Electronic address:

Article Synopsis
  • Gambogic acid (GA), derived from Garcinia hanburyi, shows potential anticancer effects in ovarian cancer (OC) by inducing a form of programmed cell death known as pyroptosis.
  • GA treatment leads to reduced cell viability and specific morphological changes in OC cells, such as cell swelling and impaired membrane integrity, associated with pyroptosis.
  • The study highlights that GA activates the ROS/p53/mitochondria signaling pathway, resulting in increased levels of cleaved caspase-3 and GSDME-N, making GA a promising therapeutic option for OC.
View Article and Find Full Text PDF

pH-responsive hydrogel with gambogic acid and calcium nanowires for promoting mitochondrial apoptosis in osteosarcoma.

J Control Release

January 2025

Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China. Electronic address:

Calcium (Ca) overload therapy gained significant attention in oncology. However, its therapeutic efficacy remained limited due to insufficient Ca accumulation at the tumor site and suboptimal intracellular Ca influx. In this study, gambogic acid (GA), a natural phenolic compound known to promote Ca influx, was encapsulated within an enzyme-triggered, pH-responsive hydrogel (GM@Lip@CHP-Gel) containing Ca hydrogen phosphate nanowires (CHP) to achieve a synergistic approach for bone tumor therapy.

View Article and Find Full Text PDF

Chemoresistance encountered using conventional chemotherapy demands novel treatment approaches. Asplatin (Asp), a novel platinum (IV) prodrug designed to release cisplatin and aspirin in a reductive environment, has demonstrated high cytotoxicity at reduced drug resistance. Herein, we investigated the ability of green-synthesized nanocarriers to enhance Asp's efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!