Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715773PMC
http://dx.doi.org/10.1016/j.cmet.2015.12.001DOI Listing

Publication Analysis

Top Keywords

cell proliferation
12
insulin resistance
12
islet hyperplasia
8
response insulin
8
serpinb1
6
cell
5
serpinb1 promotes
4
promotes pancreatic
4
pancreatic cell
4
proliferation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!