Background: Bat trypanosomes are implicated in the evolution of the T. cruzi clade, which harbours most African, European and American trypanosomes from bats and other trypanosomes from African, Australian and American terrestrial mammals, including T. cruzi and T. rangeli, the agents of the American human trypanosomiasis. The diversity of bat trypanosomes globally is still poorly understood, and the common ancestor, geographical origin, and evolution of species within the T. cruzi clade remain largely unresolved.
Methods: Trypanosome sequences were obtained from cultured parasites and from museum archived liver/blood samples of bats captured from Guatemala (Central America) to the Brazilian Atlantic Coast. Phylogenies were inferred using Small Subunit (SSU) rRNA, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH), and Spliced Leader (SL) RNA genes.
Results: Here, we described Trypanosoma wauwau n. sp. from Pteronotus bats (Mormoopidae) placed in the T. cruzi clade, then supporting the bat-seeding hypothesis whereby the common ancestor of this clade likely was a bat trypanosome. T. wauwau was sister to the clade T. spp-Neobats from phyllostomid bats forming an assemblage of trypanosome species exclusively of Noctilionoidea Neotropical bats, which was sister to an Australian clade of trypanosomes from indigenous marsupials and rodents, which possibly evolved from a bat trypanosome. T. wauwau was found in 26.5% of the Pteronotus bats examined, and phylogeographical analysis evidenced the wide geographical range of this species. To date, this species was not detected in other bats, including those that were sympatric or shared shelters with Pteronotus. T. wauwau did not develop within mammalian cells, and was not infective to Balb/c mice or to triatomine vectors of T. cruzi and T. rangeli.
Conclusions: Trypanosoma wauwau n. sp. was linked to Pteronotus bats. The positioning of the clade T. wauwau/T.spp-Neobats as the most basal Neotropical bat trypanosomes and closely related to an Australian lineage of trypanosomes provides additional evidence that the T. cruzi clade trypanosomes likely evolved from bats, and were dispersed in bats within and between continents from ancient to unexpectedly recent times.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690318 | PMC |
http://dx.doi.org/10.1186/s13071-015-1255-x | DOI Listing |
BMC Genomics
October 2024
York Biomedical Research Institute, Department of Biology and York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
Background: Trypanosomatid parasites are a group of protozoans that cause devastating diseases that disproportionately affect developing countries. These protozoans have developed several mechanisms for adaptation to survive in the mammalian host, such as extensive expansion of multigene families enrolled in host-parasite interaction, adaptation to invade and modulate host cells, and the presence of aneuploidy and polyploidy. Two mechanisms might result in "complex" isolates, with more than two haplotypes being present in a single sample: multiplicity of infections (MOI) and polyploidy.
View Article and Find Full Text PDFJ Infect
November 2024
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China. Electronic address:
Parasitol Res
July 2024
Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
Bats are hosts for diverse Trypanosoma species, including trypanosomes of the Trypanosoma cruzi clade. This clade is believed to have originated in Africa and diversified in many lineages worldwide. In several geographical areas, including Cameroon, no data about trypanosomes of bats has been collected yet.
View Article and Find Full Text PDFParasit Vectors
May 2024
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; Key Laboratory on Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.
Infect Genet Evol
September 2023
Facultad de Ciencias, Universidad Autonoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Colonia Playitas C.P. 22860, Ensenada, Baja California, Mexico.
Trypanosoma cruzi is the parasite responsible for Chagas disease. The parasite has been classified into six taxonomic assemblages: TcI-TcVI and TcBat (aka Discrete Typing Units or Near-Clades). No studies have focused on describing the genetic diversity of T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!