Neutral and charge tagged reagents were used to investigate the mechanism of the classical Morita-Baylis-Hillman (MBH) reaction as well as its aza-version using mass spectrometry with electrospray ionization (ESI-MS). The use of an acrylate (activated alkene) with a methylimidazolium ion as a charge tag eliminates the requirement for adding acids as ESI(+) additives, which are normally used to favor protonation and therefore detection of reaction partners (reagents, intermediates, and products) by ESI(+)-MS. For both charge tagged reactions (MBH/aza-MBH), most reactants, intermediates, and the final adducts were efficiently detected in the form of abundant doubly and singly charged ions. Characterization of the reactions partners was performed via both tandem mass spectrometry (ESI(+)-MS/MS) and accurate m/z measurements. The charge tagged reactions also showed faster conversion rates when compare to the neutral reaction, indicating a dualistic role for the charge tagged acrylate. It acts as both the reagent and a cocatalyst due to the inherent ionic-coordination nature of the methylimidazolium ion, which stabilizes the zwitterionic intermediates and reagents through different types of coordination ion pairs. Hemiacetal intermediates for the rate-limiting proton transfer step were also intercepted and characterized for both classical and aza-MBH charge tagged reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b02651DOI Listing

Publication Analysis

Top Keywords

charge tagged
24
tagged reactions
12
charge
8
dualistic role
8
role charge
8
tagged acrylate
8
mass spectrometry
8
methylimidazolium ion
8
tagged
6
reactions
5

Similar Publications

Anticipating intramolecular excited-state proton-coupled electron transfer (PCET) process within dinuclear Ir-photocatalytic system via the covalent linkage is seminal, yet challenging. Indeed, the development of various dinuclear complexes is also promising for studying integral photophysics and facilitating applications in catalysis or biology. Herein, this study reports dinuclear [Ir(bis{imidazo-phenanthrolin-2-yl}-hydroquinone)(ppy)] (1) complex by leveraging both ligand-centered redox property and intramolecular H-bonding for exploring dual excited-state proton-transfer assisted PCET process.

View Article and Find Full Text PDF

Hyperballistic transport in dense systems of charged particles under ac electric fields.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli, " University of Milan, via Celoria 16, 20133 Milan, Italy.

The Langevin equation is ubiquitously employed to numerically simulate plasmas, colloids, and electrolytes. However, the usual assumption of white noise becomes untenable when the system is subject to an external ac electric field. This is because the charged particles in the system, which provide the thermal bath for the particle transport, become themselves responsive to the ac field and the thermal noise is field dependent and non-Markovian.

View Article and Find Full Text PDF

Fractional hyper-ballistic transport under external oscillating electric fields.

Chaos

December 2024

Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, Košice 042 00, Slovakia.

The generalized Langevin equation (GLE) for a tagged particle in a liquid of charged particles under the influence of external AC electric fields is studied. For the fractional memory kernel in the GLE, the mean square displacement (MSD) of the particle is studied analytically in both the underdamped and overdamped regimes. The MSD consists of a part corresponding to the absence of the external field and a part affected by the external field, which is expressed through the mean velocity of the particle.

View Article and Find Full Text PDF

Energy scarcity and environmental pollution have prompted research in hydrogen generation from solar to develop clean energy through highly efficient, effective, and long-lasting photocatalytic systems. Designing a catalyst with robust stability and an effective carrier separation rate was achieved through heterostructure assembly, but certain functionalities must be explored. In this paper we designed a ternary heterostructure assembly of CdS nanospheres wrapped with hierarchical shell walls of layered MXene-tagged MoS nanoflakes, forming intimate interfaces through an in-situ growth process.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are emerging as a promising alternative to traditional antibiotics due to their ability to disturb bacterial membranes and/or their intracellular processes, offering a potential solution to the growing problem of antimicrobial resistance. AMP effectiveness is governed by factors such as net charge, hydrophobicity, and the ability to form amphipathic secondary structures. When properly balanced, these characteristics enable AMPs to selectively target bacterial membranes while sparing eukaryotic cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!