Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits--wood density, specific leaf area and maximum height--consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature16476 | DOI Listing |
J Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Life Sciences, Yan'an University, Yan'an 716000, China.
Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Plant Factory R&D Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
Supplementation with far-red light in controlled environment agriculture production can enhance yield by triggering the shade avoidance syndrome. However, the effectiveness of this yield enhancement can be further improved through intermittent far-red light supplementation. In this study, the effects are explored of varying far-red light photon intensities and intermittent exposure durations-specifically at 5, 15, 30, and 45 min intervals-on the growth and development of lettuce () in plant factories, while maintaining a constant red light photon flux and daily light integral.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National-Local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
The 'Cuimi' kumquat is a unique citrus cultivar known for its thin, crisp pulp and sweet, aromatic flavor. In addition to its use in fresh consumption and processing, this variety exhibits certain medicinal properties. This study aims to investigate the genetic diversity of the Huanglongbing (HLB) bacterium across different tissues of the 'Cuimi' kumquat, offering a theoretical basis for understanding the HLB epidemic in Dechang County, Sichuan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!