Background: Accurate frameless neuronavigation is highly important in cranial neurosurgery. The accuracy demonstrated in phantom models might not be representative for results in patients. Few studies describe the in vivo quantitative accuracy of neuronavigation in patients. The use of a frameless stereotactic drilling technique for stereoelectroencephalography depth electrode implantation in epilepsy patients, as well as diagnostic biopsies, provides a unique opportunity to assess the accuracy with postoperative imaging of preoperatively planned trajectories.

Methods: In 7 patients with refractory epilepsy, 89 depth electrodes were implanted using a frameless stereotactic drilling technique. Each electrode was planned on a preoperative magnetic resonance and computed tomographic scan, and verified on postoperative computed tomographic scan. After fusion of preoperative and postoperative imaging, the accuracy for each electrode was calculated as the Euclidean distance between the planned and observed position of the electrode tip.

Results: The median Euclidean distance between planned and observed electrode implantations was 3.5 mm (95% confidence interval, 2.9-3.9 mm) with a range of 1.2-13.7 mm.

Conclusions: In this study, we showed that the in vivo accuracy of our frameless stereotactic drilling technique, suitable for stereoelectroencephalography depth electrode placement and diagnostic brain biopsies, was 3.5 mm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2015.11.041DOI Listing

Publication Analysis

Top Keywords

frameless stereotactic
16
stereotactic drilling
16
drilling technique
16
stereoelectroencephalography depth
12
accuracy frameless
8
diagnostic biopsies
8
depth electrodes
8
depth electrode
8
postoperative imaging
8
computed tomographic
8

Similar Publications

Introduction: SRS for the treatment of limited brain metastases (BM) is widely accepted, but there are still limitations in the management of numerous BM. Frameless single-isocenter multitarget SRS is a novel technique that allows for rapid treatment delivery to multiple BM. We report our preliminary clinical, dosimetric, and patient´s shifts outcomes with this technique.

View Article and Find Full Text PDF

An MRI-guided stereotactic neurosurgical robotic system for semi-enclosed head coils.

J Robot Surg

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Magnetic resonance imaging (MRI) offers high-quality soft tissue imaging without radiation exposure, which allows stereotactic techniques to significantly improve outcomes in cranial surgeries, particularly in deep brain stimulation (DBS) procedures. However, conventional stereotactic neurosurgeries often rely on mechanical stereotactic head frames and preoperative imaging, leading to suboptimal results due to the invisibility and the contact with patient's head, which may cause additional harm. This paper presents a frameless, MRI-guided stereotactic neurosurgical robotic system.

View Article and Find Full Text PDF

Purpose: Uveal melanoma (UM) represents the most prevalent and aggressive intraocular malignancy in adults. This study examined the outcomes of patients diagnosed with high-risk UM who underwent fractionated stereotactic radiosurgery (fSRS) treatment utilizing a novel Linear Accelerator (LINAC)-based frameless technique.

Design: Retrospective, interventional case series.

View Article and Find Full Text PDF

Background: We assessed the accuracy and performed a directional analysis of robot-assisted implantation of stereoelectroencephalography (SEEG) depth electrodes in children using the frameless neurolocate 3D registration module.

Methods: Thirteen children with epilepsy undergoing stereotactic robot-assisted insertion of SEEG electrodes were included. Six children were operated on with standard frame-based registration while 7 with the use of the frameless neurolocate registration module.

View Article and Find Full Text PDF

Introduction: Non-invasive frameless systems have paved its way for stereotactic radiotherapy treatments compared to gold standard invasive rigid frame-based systems as they are comfortable to patients, do not have risk of pain, bleeding, infection, frame slippage and have similar treatment efficacy.

Aim And Objective: To estimate immobilisation accuracy (interfraction and intrafraction) and PTV margins with double shell positioning system (DSPS) using daily image guidance for stereotactic radiotherapy in patients with brain tumors.

Materials And Method: A prospective study was done in 19 cranial tumor patients with KPS ≥70, immobilized by the DSPS with mouth bite and treated with LINAC based image guided stereotactic radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!