Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

Microsc Microanal

4CERis-ICIST,Department of Civil Engineering,Instituto Superior de Engenharia de Lisboa,R. Conselheiro Emídio Navarro 1,1959-001 Lisbon,Portugal.

Published: February 2016

AI Article Synopsis

  • The paper investigates the microstructure of concrete using recycled aggregates (RA) sourced from construction and demolition waste in Portugal.
  • It employs scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to assess how different locations of RA collection affect concrete mix characteristics.
  • Results indicate that the nature of the RA significantly influences the bond strength with cement paste, and using RA increases the porosity of the mixes.

Article Abstract

This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927615015512DOI Listing

Publication Analysis

Top Keywords

microstructure concrete
8
aggregates construction
8
construction demolition
8
demolition waste
8
recycling plants
8
capillary water
8
water absorption
8
absorption test
8
sem/eds analysis
8
concrete aggregates
4

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete.

Materials (Basel)

January 2025

College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.

The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.

View Article and Find Full Text PDF

The Effect of Relative Humidity on Creep Behavior of Cement Paste Microprism.

Materials (Basel)

January 2025

Department of Civil Engineering, Laval University, Québec City, QC G1V 0A6, Canada.

Despite decades of extensive studies, the mechanism of concrete creep remains a subject of debate, mainly due to the complex nature of cement microstructure. This complexity is further amplified by the interplay between water and the cement microstructure. The present study aimed to better understand the creep mechanism through creep tests on microprisms of cement paste at hygral equilibrium.

View Article and Find Full Text PDF

The ruins of the Imperial City of the Minyue Kingdom were an important site of the Minyue Kingdom during the Han Dynasty. Characteristic bronze arrowheads unearthed from the East Gate, with their exquisite craftsmanship, provide important physical evidence for studying ancient bronze casting technology and the military activities of that time. However, there is still a lack of systematic research on the alloy composition, casting process, and chemical stability of these arrowheads in long-term burial environments.

View Article and Find Full Text PDF

Alkali-silica reaction (ASR) is an important factor that seriously affects the durability of reinforced concrete (RC) structures. The current research on alkali-aggregate mainly focuses on the deterioration mechanism of materials and the mechanical properties of standard specimens. However, there is a gap in the field of research on the effect of alkali-aggregate damage on the level of RC structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!