Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A discrete network model (DNM) to represent the mechanical behavior of the human amnion is proposed. The amnion is modeled as randomly distributed points interconnected with connector elements representing collagen crosslinks and fiber segments, respectively. This DNM is computationally efficient and allows simulations with large domains. A representative set of parameters has been selected to reproduce the uniaxial tension-stretch and kinematic responses of the amnion. Good agreement is found between the predicted and measured equibiaxial tension-stretch curves. Although the model represents the amnion phenomenologically, model parameters are physically motivated and their effect on the tension-stretch and in-plane kinematic responses is discussed. The model is used to investigate the local response in the near field of a circular hole, revealing that the kinematic response at the circular free boundaries leads to compaction and strong alignment of the network at the border of the defect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2015.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!