Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape.

Phys Chem Chem Phys

Dipartimento di Chimica Industriale "Toso Montanari" and INSTM, Università di Bologna, Viale Risorgimento 4, IT-40136 Bologna, Italy.

Published: January 2016

We have studied, using Monte Carlo computer simulations, the effects that nanoparticles of similar size and three different shapes (spherical, elongated and discotic) dispersed at different concentrations in a liquid crystal (LC), have on the transition temperature, order parameter and mobility of the suspension. We have modelled the nanoparticles as berry-like clusters of spherical Lennard-Jones sites and the NP with a Gay-Berne model. We find that the overall phase behaviour is not affected by the addition of small amounts (xN = 0.1-0.5%) of nanoparticles, with the lowest perturbation obtained with disc-like nanoparticles at the lowest concentration. We observe a general decrease of the clearing temperature and a reduction in the orientational order with a change in its temperature variation, particularly in the case of the xN = 0.5% dispersions and with a more pronounced effect when the nanoparticles are spherical.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp05754jDOI Listing

Publication Analysis

Top Keywords

nanoparticles lowest
8
nanoparticles
6
doping liquid
4
liquid crystals
4
crystals nanoparticles
4
nanoparticles computer
4
computer simulation
4
simulation effects
4
effects nanoparticle
4
nanoparticle shape
4

Similar Publications

Polymer nanocomposites have been investigated as lightweight and suitable alternatives to lead-based clothing. The present study aims to fabricate flexible, lead-free, X-ray-shielding composites using a polyvinyl chloride (PVC) matrix and different nanostructures. Four different nanostructures containing impure tungsten oxide, tungsten oxide (WO), barium tungstate (BaWO), and bismuth tungstate (BiWO) were synthesized through various methods.

View Article and Find Full Text PDF

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

Carbon dots doped with metals and non-metals have gained much popularity due to the enhancement in their optical and electronic properties. In this study, polyethyleneimine-functionalized transition metal (nickel or copper) doped carbon dots (CD, NiCD and CuCD) were synthesized through hydrothermal method. The carbon dots exhibited a blue fluorescence at 470 nm when excited at 350 nm.

View Article and Find Full Text PDF

Evaluation of minced beef quality fortified with edible microalgae species during cryogenic storage.

Food Res Int

January 2025

Chemistry of Natural Compounds Department, National Research Centre, 33 El-Behouth St, Dokki-Giza 12622, Egypt. Electronic address:

The aim of this study is to evaluate the effect of some microalgae species adding with different forms on minced beef meat shelf life during cryogenic storage for 13 days. Chlorella vulgaris and Arthrospira platensis are chosen because of their safety and high nutritional value. Microalgae nanoparticles with their different forms have been prepared by using emulsification solvent evaporation method.

View Article and Find Full Text PDF

: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!