The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE). To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2 x 10(6) plaque forming units). Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P < 0.05) and "Ly6C hi" inflammatory monocytes (P < 0.001) significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P < 0.05 for inflammatory monocytes compared to non-infected controls) to reach baseline levels on day 10 following infection. The percentage of "Ly6C low" patrolling monocytes significantly increased (P < 0.01) at a later time point (day 8), which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus, our findings suggest that blood monocyte-derived macrophages infiltrate the central nervous system and may contribute, with resident microglia, to the innate immune response seen during experimental HSE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689369PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145773PLOS

Publication Analysis

Top Keywords

central nervous
12
nervous system
12
blood monocytes
8
monocytes central
8
experimental herpes
8
herpes simplex
8
simplex virus
8
immune response
8
blood monocyte-derived
8
monocyte-derived macrophages
8

Similar Publications

Cancers of the brain and central nervous system: global patterns and trends in incidence.

J Neurooncol

January 2025

Cancer Surveillance Branch, International Agency for Research On Cancer (IARC), 25 Avenue Tony Garnier, CS 90627, 69366 LYON CEDEX 07, Lyon, France.

Background: Global comparisons of the burden and impact of cancers of the brain and central nervous system (CNS) are critical for developing effective control strategies and generating etiological hypotheses to drive future research.

Methods: National incidence estimates were obtained from GLOBOCAN 2022, and recorded incidence data from the Cancer in Five Continents series, both developed and compiled by the International Agency for Research on Cancer. We examined the estimated age-standardized incidence rates in 185 countries, as well as time trends in recorded incidence in 35 countries, quantifying the direction and change in the magnitude of the rates using the estimated average percentage change (EAPC).

View Article and Find Full Text PDF

This study aims to demonstrate the effect of gamma knife radiosurgery (GKRS) on symptoms, hemorrhage rates, and histopathological changes in patients with cavernous malformations (CMs), regardless of whether the symptomatic lesions are hemorrhagic. This single-center retrospective study evaluated symptomatic patients with single CMs treated with GKRS between 2016 and 2023. The patients' demographic data, presenting symptoms, GKRS radiation dose, complications developed during follow-up (hemorrhage, radiotoxicity), the rate of symptom improvement, and histopathological changes of surgically removed CMs were recorded.

View Article and Find Full Text PDF

In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.

View Article and Find Full Text PDF

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Multidimensional Classification and Prediction of Outcome Following Traumatic Brain Injury.

J Head Trauma Rehabil

January 2025

Author Affiliations: Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia (Prof Ponsford and Drs Spitz, Pyman, Carrier, Hicks, and Nguyen); Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (Dr Spitz); TIRR Memorial Hermann Research Center Houston, Texas (Drs Sander and Sherer); and H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine & Harris Health System, Houston, Texas (Drs Sander and Sherer).

Objectives: This study aimed to identify outcome clusters among individuals with traumatic brain injury (TBI), 6 months to 10 years post-injury, in an Australian rehabilitation sample, and determine whether scores on 12 dimensions, combined with demographic and injury severity variables, could predict outcome cluster membership 1 to 3 years post-injury.

Setting: Rehabilitation hospital.

Participants: A total of 467 individuals with TBI, aged 17 to 87 (M = 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!