N-Methyl-D-aspartate receptors are localized to synaptic and extrasynaptic sites of dendritic spines and shafts. Here, the ontogenic profiles of GluN3A and GluN3B subunits in the rat brain were determined. A developmental switch from GluN3A to GluN3B proteins was detected within the first two postnatal weeks of crude synaptosomes prepared from forebrain and midbrain. Further fractionation of crude synaptosomes revealed the preferential localization of GluN3B to synaptic regions from P7 onwards. Immunolabeling and biochemical fractionation of rat P7 cultured hippocampal neurons showed that GluN3B was predominantly at synaptic sites. Unlike GluN2A and GluN2B, both GluN3 subunits were mostly associated with peripheral components of the postsynaptic density (PSD) rather than its core. When considering the non-PSD fraction, the overall extrasynaptic/synaptic spatial profile of GluN3B differed from GluN3A. Heterologous expression of GluN3B with GluN1 in HEK293FT cells could not be co-immunoprecipitated with PSD-95 unless co-expressed with a PSD-95-interacting GluN2 subunit, suggesting that anchoring of GluN3B at synaptic sites may require co-assembly with another scaffold-interacting NMDAR subunit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-015-1794-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!