Interfacial properties and critical micelle concentration of lysophospholipids.

Biochemistry

Department of Chemistry, University of California, San Diego, La Jolla 92093.

Published: June 1989

The critical micelle concentration (cmc) of several lysophospholipids and of a lysophospholipid analogue was determined from surface tension measurements using the maximum bubble pressure method and/or 31P NMR. The use of the maximum bubble pressure method has now been extended to micromolar concentrations of surfactant, and the experimental parameters that effect its use have been explored. Surface activity was found to vary with changes in the chain length and in the headgroup polarity of the lysophospholipid. The cmc's for 1-decanoyl-, 1-dodecanoyl-, 1-tetradecanoyl-, and 1-hexadecanoyl-sn-glycero-3-phosphocholine are 7.0, 0.70, 0.070, and 0.007 mM, respectively. The cmc's for 1-decanoyl- and 1-dodecanoyl-sn-glycero-3-phosphoethanolamine are 4.4 and 0.33 mM, respectively. The cmc for dodecylphosphocholine, a lysophospholipid analogue, was found to be 1.1 mM. The cmc's for 1-tetradecanoyl- and 1-hexadecanoyl-sn-glycero-3-phosphoglycerol were found to be 3.0 and 0.60 mM, respectively, in pure water. In 0.1 M Tris-HCl (pH = 8.0), their cmc's are 0.16 and 0.018 mM, respectively. Surface tension and adsorption density values determined at the cmc are reported for each compound. The relationship of dynamic surface tension and lipid purity is discussed. These studies provide information about the micellization and interfacial properties of several biologically important lysophospholipids.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00438a031DOI Listing

Publication Analysis

Top Keywords

surface tension
12
interfacial properties
8
critical micelle
8
micelle concentration
8
lysophospholipid analogue
8
maximum bubble
8
bubble pressure
8
pressure method
8
cmc's 1-decanoyl-
8
properties critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!