Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation.

Circ Res

From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.).

Published: March 2016

Rationale: Telomerase is a nuclear regulator of telomere elongation with recent reports suggesting a role in regulation of mitochondrial reactive oxygen species. Flow-mediated dilation in patients with cardiovascular disease is dependent on the formation of reactive oxygen species.

Objective: We examined the hypothesis that telomerase activity modulates microvascular flow-mediated dilation, and loss of telomerase activity contributes to the change of mediator from nitric oxide to mitochondrial hydrogen peroxide in patients with coronary artery disease (CAD).

Methods And Results: Human coronary and adipose arterioles were isolated for videomicroscopy. Flow-mediated dilation was measured in vessels pretreated with the telomerase inhibitor BIBR-1532 or vehicle. Statistical differences between groups were determined using a 2-way analysis of variance repeated measure (n≥4; P<0.05). L-NAME (N(ω)-nitro-L-arginine methyl ester; nitric oxide synthase inhibitor) abolished flow-mediated dilation in arterioles from subjects without CAD, whereas polyethylene glycol-catalase (PEG-catalase; hydrogen peroxide scavenger) had no effect. After exposure to BIBR-1532, arterioles from non-CAD subjects maintained the magnitude of dilation but changed the mediator from nitric oxide to mitochondrial hydrogen peroxide (% max diameter at 100 cm H2O: vehicle 74.6±4.1, L-NAME 37.0±2.0*, PEG-catalase 82.1±2.8; BIBR-1532 69.9±4.0, L-NAME 84.7±2.2, PEG-catalase 36.5±6.9*). Conversely, treatment of microvessels from CAD patients with the telomerase activator AGS 499 converted the PEG-catalase-inhibitable dilation to one mediated by nitric oxide (% max diameter at 100 cm H2O: adipose, AGS 499 78.5±3.9; L-NAME 10.9±17.5*; PEG-catalase 79.2±4.9). Endothelial-independent dilation was not altered with either treatment.

Conclusions: We have identified a novel role for telomerase in re-establishing a physiological mechanism of vasodilation in arterioles from subjects with CAD. These findings suggest a new target for reducing the oxidative milieu in the microvasculature of patients with CAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772813PMC
http://dx.doi.org/10.1161/CIRCRESAHA.115.307918DOI Listing

Publication Analysis

Top Keywords

flow-mediated dilation
16
reactive oxygen
8
telomerase activity
8
telomerase
5
critical role
4
role telomerase
4
telomerase mechanism
4
flow-mediated
4
mechanism flow-mediated
4
dilation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!