Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2015.11.035 | DOI Listing |
Water Res
January 2025
College of Architecture and Urban Planning, Tongji University, Shanghai 200093, China. Electronic address:
Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.
View Article and Find Full Text PDFSci Total Environ
January 2025
Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:
The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.
The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Centre of Materials and Civil Engineering for Sustainability (C-MADE), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
Permeable asphalt pavement (PAP) is an efficient solution to stormwater management, allowing water to infiltrate through its layers. This reduces surface runoff and mitigates urban flooding risks. In addition to these hydrological benefits, PAP enhances water quality by filtering pollutants such as organic and inorganic materials and microplastics.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:
Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!