Background: The redundancy hypothesis predicts that the species redundancy in a plant community enhances community stability. However, numerous studies in recent years questioned the positive correlation between redundancy and stability.
Methodology: We explored the relationship between the species redundancy, functional redundancy and community stability in typical steppe grassland in Northern China by sampling grassland vegetation along a gradient of resource availability caused by micro-topography. We aimed to test whether community redundancy enhanced community stability, and to quantify the relative importance of species redundancy and functional redundancy in maintaining community stability.
Results: Our results showed that the spatial stability of plant community production increases with increased supply of soil resources, and the functional redundancy instead of species diversity or species redundancy is correlated with the community stability. Our results supported the redundancy hypothesis and have implications for sustainable grassland management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4689422 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145605 | PLOS |
Brief Funct Genomics
January 2025
Department of Computer Science & Engineering, University of Kalyani, Kalyani-741235, India.
Deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequence compressors for novel species frequently face challenges when processing wide-scale raw, FASTA, or multi-FASTA structured data. For years, molecular sequence databases have favored the widely used general-purpose Gzip and Zstd compressors. The absence of sequence-specific characteristics in these encoders results in subpar performance, and their use depends on time-consuming parameter adjustments.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.
Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).
View Article and Find Full Text PDFMicroorganisms
December 2024
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
During the trophic period of myxomycetes, the plasmodia of myxomycetes can perform crawling feeding and phagocytosis of bacteria, fungi, and organic matter. Culture-based studies have suggested that plasmodia are associated with one or several species of bacteria; however, by amplicon sequencing, it was shown that up to 31-52 bacteria species could be detected in one myxomycete, suggesting that the bacterial diversity associated with myxomycetes was likely to be underestimated. To fill this gap and characterize myxomycetes' microbiota and functional traits, the diversity and functional characteristics of microbiota associated with the plasmodia of six myxomycetes species were investigated by metagenomic sequencing.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico.
Quantitative trait loci (QTL) are genomic regions that influence essential traits in livestock. Understanding QTL distribution and density across species' genomes is crucial for animal genetics research. This study explored the QTLome of cattle, pigs, sheep, and chickens by analyzing QTL distribution and evaluating the correlation between QTL, gene density, and chromosome size with the aim to identify QTL-enriched genomic regions.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A), stomatal conductance (g) and leaf hydraulic conductance (K) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K) beyond the optimum required for maximum g (g).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!