We proposed a three-dimensional model to simulate terahertz generation from LiNbO crystal under intense laser excition (up to ~50 mJ/cm). The impact of three-photon absorption, which leads to free carrier generation and free carrier saturation (when pump fluence above ~10 mJ/cm) on terahertz generation was investigated. And further with this model, we stated the optimized experimental conditions (incident postion, beam diameter, and pulse duration, etc) for maximum generation efficiency in commonly-used tilted-pulse-front scheme. Red shift of spectrum, spatial distribution "splitting" effects of emitted THz beam, and primilary experimental verification under intense laser excitation are given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.031313 | DOI Listing |
Terahertz on-chip pathway is crucial for next-generation wireless communication, terahertz integrated circuits, and high-speed chip interconnections, yet its development is impeded by issues like channel crosstalk and disordered scattering. In this study, we propose and experimentally demonstrate a terahertz on-chip topological pathway that exhibits exceptional transmission robustness, unaffected by structural curvature. The pathway is constructed using a subwavelength structure that combines the benefits of topological properties, such as broadband single-mode transmission and linear dispersion, with the field localization effects of periodic metal structures.
View Article and Find Full Text PDFMulti-channel multiplexing metasurfaces have attracted considerable interest with the growing demand for multifunctional integration and enhanced communication capabilities. Dynamic tuning of electromagnetic waves with multiple degrees of freedom is a key approach to improving information processing capabilities. Metasurfaces with chiral meta-atoms and Janus metasurfaces with asymmetric transmission properties introduce new degrees of freedom for multiplexing technologies.
View Article and Find Full Text PDFIn the conventional optical systems, a series of polarizers, e.g., half-wave plates, and quarter-wave plates are used to control polarized wave.
View Article and Find Full Text PDFSci Rep
January 2025
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China.
Terahertz (THz) signals are crucial for ultrawideband communication and high-resolution radar, demanding miniaturized detectors that can simultaneously measure multiple parameters such as intensity, frequency, polarization, and phase. Traditional detectors fail to meet these needs. To address this, we introduce a plasmon polariton atomic cavity (PPAC) detector based on monolayer graphene, offering a multifunctional, monolithic, and miniaturized solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!