Generation of reactive oxygen species (ROS) in response to fatty acids accumulation has been classically proposed as a possible "second hit" triggering progression from simple steatosis to non-alcoholic steatohepatitis (NASH). In this study we challenged hepatocyte-specific Keap1 knockout mice (Keap1(Δhepa)) and littermate Cre- controls (Keap1(fx/fx)) with two different diet models of NASH in order to evaluate the effects of the anti-oxidant transcription factor Nrf2 over-activation on hepatic metabolism and disease progression. After 4 weeks of MCD diet the liver/body weight ratio of Keap1(Δhepa) mice was significantly higher compared to littermate controls with no differences in total body weight. Strikingly, liver histology revealed a dramatic reduction of lipid droplets confirmed by a decreased content of intra-hepatic triglycerides in Keap1(Δhepa) compared to controls. In parallel to reduced expression of genes involved in lipid droplet formation, protein expression of Liver X Receptor (LXRα/β) and Peroxisome proliferator-activated receptor α (PPARα) was significantly decreased. In contrast, genes involved in mitochondrial lipid catabolism were markedly up-regulated in Keap1(Δhepa) livers. A similar phenotype characterized by inhibition of lipogenesis in favor of increased mitochondrial catabolic activity was also observed after 13 weeks of western diet administration. MCD-induced apoptosis was significantly dampened in Keap1(Δhepa) compared to Keap1(fx/fx) as detected by TUNEL, cleaved caspase-3 and Bcl-2 protein expression analyses. However, no differences in inflammatory F4/80- and CD11b-positive cells and pro-fibrogenic genes were detected between the two groups. Although hepatic lack of Keap1 did not ameliorate inflammation, the resulting constitutive Nrf2 over-activation in hepatocytes strongly reduced hepatic steatosis via enhanced lipid catabolism and repressed de novo lipogenesis during murine NASH development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.014 | DOI Listing |
J Hazard Mater
March 2024
State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China. Electronic address:
Nonalcoholic steatohepatitis (NASH) is multifactorial that lifestyle, genetic, and environmental factors contribute to its onset and progression, thereby posing a challenge for therapeutic intervention. Nanoplastic (NP) is emerged as a novel environmental metabolism disruptor but the etiopathogenesis remains largely unknown. In this study, C57BL/6 J mice were fed with normal chow diet (NCD) and high-fat diet (HFD) containing 70 nm polystyrene microspheres (NP).
View Article and Find Full Text PDFCTNNB1 (catenin beta 1)-mutated hepatocellular carcinomas (HCCs) account for a large proportion of human HCCs. They display high levels of respiratory chain activity. As metabolism and redox balance are closely linked, tumor cells must maintain their redox status during these metabolic alterations.
View Article and Find Full Text PDFCurr Opin Pharmacol
October 2021
West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, China. Electronic address:
Hepatology
September 2021
Division of Gastroenterology, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan.
J Hepatol
March 2021
Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany. Electronic address:
Background & Aims: In chronic liver diseases, inflammation induces oxidative stress and thus may contribute to the progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in humans and mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!