A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A forest-based feature screening approach for large-scale genome data with complex structures. | LitMetric

A forest-based feature screening approach for large-scale genome data with complex structures.

BMC Genet

Department of Mathematics and Statistics, Utah State University, 3900 Old Main, Logan, 84322, UT, USA.

Published: December 2015

Background: Genome-wide association studies (GWAS) interrogate large-scale whole genome to characterize the complex genetic architecture for biomedical traits. When the number of SNPs dramatically increases to half million but the sample size is still limited to thousands, the traditional p-value based statistical approaches suffer from unprecedented limitations. Feature screening has proved to be an effective and powerful approach to handle ultrahigh dimensional data statistically, yet it has not received much attention in GWAS. Feature screening reduces the feature space from millions to hundreds by removing non-informative noise. However, the univariate measures used to rank features are mainly based on individual effect without considering the mutual interactions with other features. In this article, we explore the performance of a random forest (RF) based feature screening procedure to emphasize the SNPs that have complex effects for a continuous phenotype.

Results: Both simulation and real data analysis are conducted to examine the power of the forest-based feature screening. We compare it with five other popular feature screening approaches via simulation and conclude that RF can serve as a decent feature screening tool to accommodate complex genetic effects such as nonlinear, interactive, correlative, and joint effects. Unlike the traditional p-value based Manhattan plot, we use the Permutation Variable Importance Measure (PVIM) to display the relative significance and believe that it will provide as much useful information as the traditional plot.

Conclusion: Most complex traits are found to be regulated by epistatic and polygenic variants. The forest-based feature screening is proven to be an efficient, easily implemented, and accurate approach to cope whole genome data with complex structures. Our explorations should add to a growing body of enlargement of feature screening better serving the demands of contemporary genome data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690313PMC
http://dx.doi.org/10.1186/s12863-015-0294-9DOI Listing

Publication Analysis

Top Keywords

feature screening
36
forest-based feature
12
genome data
12
screening
9
feature
9
large-scale genome
8
data complex
8
complex structures
8
complex genetic
8
traditional p-value
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!