Interplay between the hydrophobic effect and dipole interactions in peptide aggregation at interfaces.

Phys Chem Chem Phys

Fischell Department of Bioengineering and Biophysics Program, University of Maryland, College Park, Maryland, USA.

Published: January 2016

Protein misfolding is an intrinsic property of polypeptides, and misfolded conformations have a propensity to aggregate. In the past decade, the development of various coarse-grained models for proteins has provided key insights into the driving forces in folding and aggregation. We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model (WEPPROM) by adding oppositely charged dummy particles inside protein backbone beads. With this model, we were able to achieve significant α/β secondary structure content, without any added bias. We now extend the model to study peptide aggregation at hydrophobic-hydrophilic interfaces and draw comparisons to aggregation in explicit water solvent. Elastin-like octapeptides (GV)4 are used as a model system for this study. A condensation-ordering mechanism of aggregation is observed in water. Our results suggest that backbone interpeptide dipolar interactions, not hydrophobicity, plays a more significant role in fibril-like peptide aggregation. We observe a cooperative effect in hydrogen bonding or dipolar interactions, with an increase in aggregate size in water and at interfaces. Based on this cooperative effect, we provide a potential explanation for the observed nucleus size in peptide aggregation pathways. The presence of a hydrophobic-hydrophilic interface increases both (a) order of aggregates formed, and (b) rate of the aggregation process. Without dipolar particles, peptide aggregation is not observed at the hydrophilic-hydrophobic interface. Thus, the presence of dipoles, not hydrophobicity, plays a key role in aggregation observed at hydrophobic interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp05867hDOI Listing

Publication Analysis

Top Keywords

peptide aggregation
20
aggregation observed
12
aggregation
10
dipolar interactions
8
hydrophobicity plays
8
peptide
5
interplay hydrophobic
4
hydrophobic dipole
4
dipole interactions
4
interactions peptide
4

Similar Publications

Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections.

Int J Biol Macromol

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Recent Advances in the Search for Effective Anti-Alzheimer's Drugs.

Int J Mol Sci

December 2024

Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna Str. 9, 30-688 Kraków, Poland.

Alzheimer's disease, the most common form of dementia, is characterized by the deposition of amyloid plaques and neurofibrillary tangles in the brain, leading to the loss of neurons and a decline in a person's memory and cognitive function. As a multifactorial disease, Alzheimer's involves multiple pathogenic mechanisms, making its treatment particularly challenging. Current drugs approved for the treatment of Alzheimer's disease only alleviate symptoms but cannot stop the progression.

View Article and Find Full Text PDF

In Vitro Bioaccessibility of Edible Seaweed Proteins from the Chilean Coast and Proteins from the Novel Seaweed-Derived Mycoprotein.

Molecules

January 2025

Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Santiago 8330111, Chile.

Seaweed biomass is globally underutilized as a source of proteins despite its nutritional potential, with much of its use focused on hydrocolloid extraction. This study evaluated the nutritional quality and digestibility of protein and amino acids from two brown seaweeds ( spp. and ), one green seaweed ( spp.

View Article and Find Full Text PDF

The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology.

Parkinsonism Relat Disord

December 2024

Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA.

The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!