Marine Oil Biodegradation.

Environ Sci Technol

Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee, Knoxville, Tennessee 37996, United States and.

Published: March 2016

Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b03333DOI Listing

Publication Analysis

Top Keywords

dispersed oil
8
residence time
8
oil
7
marine
4
marine oil
4
oil biodegradation
4
biodegradation crude
4
crude oil
4
oil marine
4
marine environment
4

Similar Publications

Designing mechanically robust one-component nanocomposites via hyperbranched cellulose nanofibril grafted vegetable oil polymers.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China. Electronic address:

Achieving effective interfacial compatibility between hydrophilic cellulose nanofibrils (CNFs) and hydrophobic vegetable oil polymers (VOPs) remained a significant challenge. To address this issue, we developed a one-component nanocomposite (OCN) based on hyperbranched CNF-grafted VOPs. Rigid precursor initiator poly (vinylbenzyl chloride) (PVBC) was first grafted onto the CNF surface via phase-transfer catalysis, forming a branched macroinitiator (CNF-g-PVBC) with chlorine contents ranging from 4.

View Article and Find Full Text PDF

In this study, we synthesized a water-based, rosin-modified, polymerized oil (WRPO) an addition and polymerization reaction of dehydrated castor oil (DCO), rosin acid (RA), zinc resinate (ZR) and dehydrated castor oil acid (DCOA). Addition and polymerization reactions at 240 °C, followed by neutralization with ammonia, dissolution into butyl alcohol and subsequent dilution with water, were performed at varying DCOA contents of 10%, 20%, 30%, 35% and 40%. WRPO was mixed with butoxymethylmelamine (BMM), a curing agent, at a weight ratio of 80 : 20, and then cured for 2 hours at 130 °C.

View Article and Find Full Text PDF

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

Edible coating (EC) can reduce excessive oil absorption in deep-fat fried food products. Ultrasound is an efficient pretreatment to preserve the quality characteristics of fried samples. The impact of guar gum based EC and sonication on the quality parameters of fried zucchini slices was investigated.

View Article and Find Full Text PDF

Consumption of oleogel alleviates lipid metabolism disorders in high-fat diet-fed rats by inhibiting LPS-induced gut microbiota-mediated inflammation.

Food Funct

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.

This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!