DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825770PMC
http://dx.doi.org/10.1080/15384101.2015.1120921DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
cycle progression
12
dna damage
12
unable interact
8
interact pcna
8
cell proliferation
8
influences cell
8
cell
7
protein
6
ddb2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!