Pneumoperitoneum simulation based on mass-spring-damper models for laparoscopic surgical planning.

J Med Imaging (Bellingham)

Nagoya University , Information and Communications, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan ; Nagoya University , Graduate School of Information Science, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

Published: October 2015

Laparoscopic surgery, which is one minimally invasive surgical technique that is now widely performed, is done by making a working space (pneumoperitoneum) by infusing carbon dioxide ([Formula: see text]) gas into the abdominal cavity. A virtual pneumoperitoneum method that simulates the abdominal wall and viscera motion by the pneumoperitoneum based on mass-spring-damper models (MSDMs) with mechanical properties is proposed. Our proposed method simulates the pneumoperitoneum based on MSDMs and Newton's equations of motion. The parameters of MSDMs are determined by the anatomical knowledge of the mechanical properties of human tissues. Virtual [Formula: see text] gas pressure is applied to the boundary surface of the abdominal cavity. The abdominal shapes after creation of the pneumoperitoneum are computed by solving the equations of motion. The mean position errors of our proposed method using 10 mmHg virtual gas pressure were [Formula: see text], and the position error of the previous method proposed by Kitasaka et al. was 35.6 mm. The differences in the errors were statistically significant ([Formula: see text], Student's [Formula: see text]-test). The position error of the proposed method was reduced from [Formula: see text] to [Formula: see text] using 30 mmHg virtual gas pressure. The proposed method simulated abdominal wall motion by infused gas pressure and generated deformed volumetric images from a preoperative volumetric image. Our method predicted abdominal wall deformation by just giving the [Formula: see text] gas pressure and the tissue properties. Measurement of the visceral displacement will be required to validate the visceral motion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4682385PMC
http://dx.doi.org/10.1117/1.JMI.2.4.044004DOI Listing

Publication Analysis

Top Keywords

[formula text]
28
gas pressure
20
proposed method
16
text] gas
12
abdominal wall
12
based mass-spring-damper
8
mass-spring-damper models
8
[formula
8
abdominal cavity
8
method simulates
8

Similar Publications

In the modern healthcare system, the rational allocation of emergency department (ED) resources is crucial for enhancing emergency response efficiency, ensuring patient safety, and improving the quality of medical services. This paper focuses on the issue of ED resource allocation and designs a priority sorting system for ED patients. The system classifies patients into two queues: urgent and routine.

View Article and Find Full Text PDF

This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion system(SPCS) that operates under real-time weather conditions. The primary contribution is the introduction of an uncertain model, which has not been published before, simulating the SPCS's actual functioning. The proposed robust control strategy involves two stages: first, modifying the standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using real-time measurements of temperature, solar irradiance, and wind speed.

View Article and Find Full Text PDF

Efficient and accurate determination of the degree of substitution of cellulose acetate using ATR-FTIR spectroscopy and machine learning.

Sci Rep

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Karlsruhe, 76344, Germany.

Multiple linear regression models were trained to predict the degree of substitution (DS) of cellulose acetate based on raw infrared (IR) spectroscopic data. A repeated k-fold cross validation ensured unbiased assessment of model accuracy. Using the DS obtained from H NMR data as reference, the machine learning model achieved a mean absolute error (MAE) of 0.

View Article and Find Full Text PDF

Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors.

Sci Rep

January 2025

Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data.

View Article and Find Full Text PDF

Effects of dam fear and stress on metrics of puppy welfare in commercial breeding kennels.

Sci Rep

January 2025

Center for Animal Welfare Science, Departments of Comparative Pathobiology and Animal Science, Purdue University, West Lafayette, IN, 47907, USA.

It is well established that maternal factors can affect the abilities of offspring to cope with stressors and can influence their overall welfare states. However, maternal effects have not been extensively explored in US commercial breeding kennels (CBKs). Therefore, the objective of this study was to identify if fear and stress in dams affected puppy welfare metrics in CBKs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!