DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013) and its isogenic parent, Escherichia coli BL21(DE3), when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963). Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664681PMC
http://dx.doi.org/10.1016/j.gdata.2015.08.012DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
transcriptional profiling
4
profiling thymidine-producing
4
thymidine-producing strain
4
strain recombineered
4
recombineered escherichia
4
coli bl21
4
bl21 dna
4
dna microarrays
4
microarrays compare
4

Similar Publications

L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.

View Article and Find Full Text PDF

Photoinitiated Thiol-Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion.

ACS Appl Mater Interfaces

January 2025

Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments.

View Article and Find Full Text PDF

A synthetic biology approach for identifying de-SUMOylation enzymes of substrates.

J Integr Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.

A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.

View Article and Find Full Text PDF

[Not Available].

Tidsskr Nor Laegeforen

January 2025

Medisinsk avdeling, Drammen Sykehus.

Background: When haemolytic anaemia, thrombocytopenia and renal failure are present, a thrombotic microangiopathic (TMA) condition should be suspected. We describe the various differential diagnoses of primary TMA syndromes, their clinical findings, clinical workup and treatment.

Case Presentation: A previously healthy man in his fifties was hospitalised with anaemia, thrombocytopenia, bilirubinaemia and acute renal failure.

View Article and Find Full Text PDF

Three chondroitin sulfate (CS) analogues with predominant subtypes (A, C, and E) were prepared from engineered K4 combined with regioselective sulfation. CS with the designed sulfates as the main components was characterized by nuclear magnetic resonance spectroscopy, elementary analysis, and disaccharide analysis. CS prepared from the native or degraded capsular polysaccharide had molecular weights of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!