Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC) development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR) or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4677249 | PMC |
http://dx.doi.org/10.1155/2016/5272498 | DOI Listing |
Gels
January 2025
Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea.
Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration.
View Article and Find Full Text PDFCells
January 2025
College of Pharmacy, Kyungsung University, 309 Suyeong-ro, Busan 48434, Republic of Korea.
Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. Young (2-month-old) and aged (20-month-old) male C57BL/6 mice were exposed to BBP through drinking water at a dose of 169 μg/kg/day for 6 and 4 months, respectively.
View Article and Find Full Text PDFGene Ther
January 2025
School of Pharmacy, East China University of Science and Technology, Shanghai, China.
Osteoarthritis (OA), a prevalent joint disorder, can lead to disability, with no effective treatment available. Interleukin-1 (IL-1) plays a crucial role in the progression of OA, and its receptor antagonist (IL-1Ra), a natural IL-1 inhibitor, represents a promising therapeutic target by obstructing the IL-1 signaling pathway. This study delivered IL-1Ra via adeno-associated virus (AAV), a gene therapy vector enabling long-term protein expression, to treat knee osteoarthritis (KOA) in animal models.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
Skin-derived stem cells (SDSCs) are a subtype of adult stem cells (ASCs) that are widely harvested and exempt from ethical restrictions in clinical applications. These cells possess capabilities for self-renewal, proliferation, and multi-lineage differentiation. Compared to model animals like rats and mice, pigs exhibit greater physiological similarity to humans.
View Article and Find Full Text PDFDev Biol
January 2025
The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia. Electronic address:
The MYST family histone acetyltransferase gene, KAT6B (MYST4, MORF, QKF) is mutated in two distinct human congenital disorders characterised by intellectual disability, facial dysmorphogenesis and skeletal abnormalities; Say-Barber-Biesecker-Young-Simpson variant of Ohdo syndrome and Genitopatellar syndrome. Despite its requirement in normal skeletal development, the cellular and transcriptional effects of KAT6B in skeletogenesis have not been thoroughly studied. Here, we show that germline deletion of the Kat6b gene in mice causes premature ossification in vivo, resulting in shortened craniofacial elements and increased bone density, as well as shortened tibias with an expanded pre-hypertrophic layer, as compared to wild type controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!