Parasympathetic withdrawal plays an important role in the autonomic dysfunctions in hypertension. Since hyperpolarizing, voltage-sensitive K(+) channels (K V) hamper transmitter release, elevated K V-activity may explain the disturbed vagal control of heart rate (HR) in hypertension. Here, the K V inhibitor 3,4-diaminopyridine was used to demonstrate the impact of K V on autonomic HR control. Cardiac output and HR were recorded by a flow probe on the ascending aorta in anesthetized, normotensive (WKY), and spontaneously hypertensive rats (SHR), and blood pressure by a femoral artery catheter. 3,4-diaminopyridine induced an initial bradycardia, which was greater in SHR than in WKY, followed by sustained tachycardia in both strains. The initial bradycardia was eliminated by acetylcholine synthesis inhibitor (hemicholinium-3) and nicotinic receptor antagonist/ganglion blocker (hexamethonium), and reversed to tachycardia by muscarinic receptor (mAchR) antagonist (atropine). The latter was abolished by sympatho-inhibition (reserpine). Reserpine also eliminated the late, 3,4-diaminopyridine-induced tachycardia in WKY, but induced a sustained atropine-sensitive bradycardia in SHR. Inhibition of the parasympathetic component with hemicholinium-3, hexamethonium, or atropine enhanced the late tachycardia in SHR, whereas hexamethonium reduced the tachycardia in WKY. In conclusion, 3,4-diaminopyridine-induced acetylcholine release, and thus enhanced parasympathetic ganglion transmission, with subsequent mAchR activation and bradycardia. 3,4-diaminopyridine also activated tachycardia, initially by enhancing sympathetic ganglion transmission, subsequently by activation of norepinephrine release from sympathetic nerve terminals. The 3,4-diaminopyridine-induced parasympathetic activation was stronger and more sustained in SHR, demonstrating an enhanced inhibitory control of K V on parasympathetic ganglion transmission. This enhanced K V activity may explain the dysfunctional vagal HR control in SHR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4672051 | PMC |
http://dx.doi.org/10.3389/fneur.2015.00260 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.
Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph's Hospital and Medical Center (SJHMC), Phoenix, AZ 85013, USA.
Traumatic optic neuropathy (TON) has been regarded a vision-threatening condition caused by either ocular or blunt/penetrating head trauma, which is characterized by direct or indirect TON. Injury happens during sports, vehicle accidents and mainly in military war and combat exposure. Earlier, we have demonstrated that remote ischemic post-conditioning (RIC) therapy is protective in TON, and here we report that AMPKα1 activation is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!