Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

Front Psychol

Department of Psychology, Center for Brain and Cognitive Sciences, Peking University Beijing, China ; Beijing Key Laboratory of Behavior and Mental Health, Peking University Beijing, China ; Key Laboratory of Computational Linguistics, Ministry of Education, Peking University Beijing, China ; PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing, China ; Collaborative Innovation Center for Language Competence, Jiangsu Normal University Xuzhou, China.

Published: December 2015

Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the later stage of sentence integration. Thus, rhythmic pattern in Chinese can dynamically affect both local phrase analysis and global sentence integration during silent reading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673344PMC
http://dx.doi.org/10.3389/fpsyg.2015.01881DOI Listing

Publication Analysis

Top Keywords

rhythmic pattern
40
word order
20
pattern word
12
pattern
11
rhythmic
9
processing rhythmic
8
pattern chinese
8
sentence reading
8
silent reading
8
regressive eye
8

Similar Publications

Patients with cirrhosis have high systemic inflammation (TNFα, CRP, and IL-6) that is associated with poor outcomes. These biomarkers need continuous non-invasive monitoring, which is difficult with blood. We studied the AWARE sweat-sensor to measure these in passively expressed sweat in healthy people (N = 12) and cirrhosis (N = 32, 10 outpatients/22 inpatients) for 3 days.

View Article and Find Full Text PDF

The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.

View Article and Find Full Text PDF

The rhythm of horse gaits.

Ann N Y Acad Sci

December 2024

Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.

What makes animal gaits so audibly rhythmic? To answer this question, we recorded the footfall sound of 19 horses and quantified the rhythmic differences in the temporal structure of three natural gaits: walk, trot, and canter. Our analyses show that each gait displays a strikingly specific rhythmic pattern and that all gaits are organized according to small-integer ratios, those found when adjacent temporal intervals are related by a mathematically simple relationship of integer numbers. Walk and trot exhibit an isochronous structure (1:1)-similar to a ticking clock-while canter is characterized by three small-integer ratios (1:1, 1:2, 2:1).

View Article and Find Full Text PDF

Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues.

View Article and Find Full Text PDF

Background: Food provides essential nutrients and energy necessary for animals to sustain life activities. Accordingly, dietary niche analysis facilitates the exploration of foraging strategies and interspecific relationships among wildlife. The vegetation succession has reduced understory forage resources (.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!