We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (σ) and large thermopower leading to a high power factor (S(2)σ) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (vg). Consequently, lowering the lattice thermal conductivity (κlatt) below 2 W/m K. Low κlatt combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZTmax of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4937774DOI Listing

Publication Analysis

Top Keywords

high temperature
12
temperature thermoelectric
8
bulk mx2
8
mx2 compounds
8
high power
8
power factor
8
high
6
thermoelectric properties
4
properties based
4
based transition
4

Similar Publications

Background: In pediatric care, mothers' confidence concerning their knowledge, practice, and attitude in managing fevers is crucial. Web-based educational platforms offer a convenient and accessible means to empower mothers in this regard.

Aim: This study aimed to evaluate the effect of web-based education for empowering mothers regarding pediatric fever management.

View Article and Find Full Text PDF

This study aimed to assess the efficacy and safety of gilteritinib combined with chemotherapy in treating newly diagnosed FLT3-mutated acute myeloid leukemia (AML). We retrospectively collected clinical data from 16 patients newly diagnosed with FLT3-mutated AML at Jiangsu Province Hospital. Patients received induction therapy with the classic "3 + 7" regimen or the VA regimen, and all patients were immediately supplied with gilteritinib after detecting FLT3-ITD/TKD mutations.

View Article and Find Full Text PDF

Tigernut is a potential source of valuable edible oil; however, current oil extraction techniques are inefficient. We assessed high temperature-induced variations in oil absorption and enzymatic hydrolysis of tigernut starch (TS) in the presence of protein to explore the intrinsic reasons for the low oil extraction from tigernut. The results showed that, due to high temperature and the presence of protein, an increase in the volume mean diameters and agglomeration of TS granules occurred.

View Article and Find Full Text PDF

Transparent cellulose-lignin films containing Fe with high UV absorption for thermal management.

Int J Biol Macromol

January 2025

Research Division for Sustainable Papermaking & Advanced Materials, Key Laboratory of Biobased Materials Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China. Electronic address:

In this paper, cellulose-lignin films containing Fe were prepared by the codissolution-precipitation method, and the films have high transparency as well as high UV absorption. In this process, kraft lignin chelates with Fe and then bonds with cellulose through hydrogen bonding, evenly distributing within the film. The morphological results showed that the kraft lignin chelated with Fe bound tightly linked to cellulose within the Fe@cellulose-lignin composite films.

View Article and Find Full Text PDF

Multiple mechanisms of action for an extremely painful venom.

Curr Biol

December 2024

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:

Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!