Carbon dynamics in aboveground biomass of co-dominant plant species in a temperate grassland ecosystem: same or different?

New Phytol

Lehrstuhl für Grünlandlehre, Department für Pflanzenwissenschaften, Technische Universität München, Alte Akademie 12, Freising-Weihenstephan, D-85354, Germany.

Published: April 2016

Understanding the role of individual organisms in whole-ecosystem carbon (C) fluxes is probably the biggest current challenge in C cycle research. Thus, it is unknown whether different plant community members share the same or different residence times in metabolic (τmetab ) and nonmetabolic (i.e. structural) (τnonmetab ) C pools of aboveground biomass and the fraction of fixed C allocated to aboveground nonmetabolic biomass (Anonmetab ). We assessed τmetab , τnonmetab and Anonmetab of co-dominant species from different functional groups (two bunchgrasses, a stoloniferous legume and a rosette dicot) in a temperate grassland community. Continuous, 14-16-d-long (13) C-labeling experiments were performed in September 2006, May 2007 and September 2007. A two-pool compartmental system, with a well-mixed metabolic and a nonmixed nonmetabolic pool, was the simplest biologically meaningful model that fitted the (13) C tracer kinetics in the whole-shoot biomass of all species. In all experimental periods, the species had similar τmetab (5-8 d), whereas τnonmetab ranged from 20 to 58 d (except for one outlier) and Anonmetab from 7 to 45%. Variations in τnonmetab and Anonmetab were not systematically associated with species or experimental periods, but exhibited relationships with leaf life span, particularly in the grasses. Similar pool kinetics of species suggested similar kinetics at the community level.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13800DOI Listing

Publication Analysis

Top Keywords

aboveground biomass
8
temperate grassland
8
τnonmetab anonmetab
8
species experimental
8
experimental periods
8
species
6
carbon dynamics
4
dynamics aboveground
4
biomass
4
biomass co-dominant
4

Similar Publications

Bacteria, fungi, archaea, and viruses are reflective organisms that indicate soil health. Investigating the impact of crude oil pollution on the community structure and interactions among bacteria, fungi, archaea, and viruses in Calamagrostis epigejos soil can provide theoretical support for remediating crude oil pollution in Calamagrostis epigejos ecosystems. In this study, Calamagrostis epigejos was selected as the research subject and subjected to different levels of crude oil addition (0 kg/hm, 10 kg/hm, 40 kg/hm).

View Article and Find Full Text PDF

Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.

View Article and Find Full Text PDF

An in-depth understanding of carbon dynamics and ecosystem productivity is essential for conservation and management of different ecosystems. Ecosystem dynamics and carbon budget are assessed by estimating net ecosystem production (NEP) across different global ecosystems. An ecological productivity assessment of forest and floating meadow ecosystems in Keibul Lamjao National Park (KLNP), Manipur, North East India, was conducted using the multi-criteria decision-making process namely, gray relational analysis (GRA).

View Article and Find Full Text PDF

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Heat waves (HW) are projected to become more frequent and intense with climate change, potentially enhancing the invasiveness of certain plant species. This study aims to compare the physiological and photosynthetic responses of the invasive and its native congener under simulated heat wave conditions (40.1 °C, derived from local historical data).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!