Catalytic Molecular Imaging of MicroRNA in Living Cells by DNA-Programmed Nanoparticle Disassembly.

Angew Chem Int Ed Engl

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.

Published: February 2016

Molecular imaging is an essential tool for disease diagnostics and treatment. Direct imaging of low-abundance nucleic acids in living cells remains challenging because of the relatively low sensitivity and insufficient signal-to-background ratio of conventional molecular imaging probes. Herein, we report a class of DNA-templated gold nanoparticle (GNP)-quantum dot (QD) assembly-based probes for catalytic imaging of cancer-related microRNAs (miRNA) in living cells with signal amplification capacity. We show that a single miRNA molecule could catalyze the disassembly of multiple QDs with the GNP through a DNA-programmed thermodynamically driven entropy gain process, yielding significantly amplified QD photoluminescence (PL) for miRNA imaging. By combining the robust PL of QDs with the catalytic amplification strategy, three orders of magnitude improvement in detection sensitivity is achieved in comparison with non-catalytic imaging probe, which enables facile and accurate differentiation between cancer cells and normal cells by miRNA imaging in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201509726DOI Listing

Publication Analysis

Top Keywords

living cells
16
molecular imaging
12
imaging
8
mirna imaging
8
cells
6
catalytic molecular
4
imaging microrna
4
living
4
microrna living
4
cells dna-programmed
4

Similar Publications

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Spherical harmonics texture extraction for versatile analysis of biological objects.

PLoS Comput Biol

January 2025

European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.

The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.

View Article and Find Full Text PDF

Anaemia and thrombocytopenia are blood-related irregularities linked to an increased likelihood of disease progression, leading to death in people living with human immunodeficiency virus 1 (PLHIV). Severe clinical conditions associated with human immunodeficiency 1 (HIV-1) infection may be related to blood irregularities among PLHIV. The study aimed to examine the factors correlated with blood irregularities among PLHIV receiving antiretroviral treatment in West Papua.

View Article and Find Full Text PDF

A mitochondria-targeted iridium(III) complex-based sensor for endogenous GSH detection in living cells.

Analyst

January 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.

View Article and Find Full Text PDF

Hemolysis, elevated liver enzymes, low platelet count (HELLP) syndrome is a severe complication of preeclampsia (PE), with a higher incidence rate in people living at high altitudes, such as Tibet area. Maternal HELLP syndrome is associated with an elevated neonatal mortality rate. The purpose of this study was to investigate the predicting factors for neonatal outcomes with maternal HELLP syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!