Melt-blown fibers (dav ∼1 μm) were produced from blends of poly(butylene terephthalate) (PBT) and a partially fluorinated random multiblock copolyester (PFCE) leading to enhanced hydrophobicity and even superhydrophobicity (static water contact angle = 157 ± 3°) of the associated fiber mats. XPS measurements demonstrated quantitatively that the surface fluorine content increased systematically with the bulk loading of PFCE, rising to nearly 20 atom %, which corresponds to 41 wt % PFCE at a bulk loading of 10 wt %. The PBT/PFCE fibers exhibit greater fluorine surface segregation than either melt-blown PBT/poly(ethylene-co-chlorotrifluoroethylene) (PBT/PECTFE) fibers or electrospun fibers obtained from blends of poly(styrene) and fluoroalkyl end-capped polystyrene (PS/PSCF). Dynamic contact angle measurements further demonstrated decreased surface adhesion energy of the melt-blown PBT/PFCE fiber mats due to the blooming of PFCE to the surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b09976 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!