Aerosol influence on energy balance of the middle atmosphere of Jupiter.

Nat Commun

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.

Published: December 2015

Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703888PMC
http://dx.doi.org/10.1038/ncomms10231DOI Listing

Publication Analysis

Top Keywords

energy balance
12
balance middle
8
middle atmosphere
8
atmosphere jupiter
8
fractal aggregate
8
aggregate particles
8
aerosol
5
aerosol influence
4
influence energy
4
jupiter
4

Similar Publications

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving.

Adv Sci (Weinh)

December 2024

Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.

Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.

View Article and Find Full Text PDF

Selective Colocalization of GHSR and GLP-1R in a Subset of Hypothalamic Neurons and Their Functional Interaction.

Endocrinology

November 2024

Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE; Argentine Research Council (CONICET); Scientific Research Commission, Province of Buenos Aires (CIC-PBA); National University of La Plata], B1906APO La Plata, Buenos Aires, Argentina.

The GH secretagogue receptor (GHSR) and the glucagon-like peptide-1 receptor (GLP-1R) are G protein-coupled receptors with critical, yet opposite, roles in regulating energy balance. Interestingly, these receptors are expressed in overlapping brain regions. However, the extent to which they target the same neurons and engage in molecular crosstalk remains unclear.

View Article and Find Full Text PDF

Re-scoping ultradian rhythms in the context of metabolism.

Front Physiol

December 2024

Energy and Sustainability Research Institute Groningen, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.

Rapid, ultradian biological rhythms are only partly comparable to circadian (24-h) rhythms. Often, the ensuing expectations from this comparison are that 1) ultradian rhythms should be driven by discrete oscillators, 2) they are biochemically buffered, and 3) they must be functionally linked to extrinsic events and cycles. These three expectations are not always met, but perhaps there is an adaptive benefit to ultradian rhythms not meeting these expectations, which sets them functionally apart from circadian rhythms.

View Article and Find Full Text PDF

Quenching peroxynitrite (a reactive oxidant species) is a vital process in biological systems and environmental chemistry as it maintains redox balance and mitigates damaging effects in living cells and the environment. In this study, we report a systematic analysis of the mechanism of transforming peroxynitrite into nitrate using diaryl selenide in water. Through quantum mechanical calculations, we investigate the dynamic isomerization of peroxynitrite in a homogeneous catalytic environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!