Download full-text PDF |
Source |
---|
J Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:
Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran.
The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China.
The exploration and rational design of high-performance, durable, and non-precious-metal bifunctional oxygen electrocatalysts are highly desired for the large-scale application of overall water splitting. Herein, an effective and straightforward coupling approach was developed to fabricate high-performance bifunctional OER/HER electrocatalysts based on core-shell nanostructure comprising a Ni/NiN core and a NiFe(OH) shell. The as-prepared Ni/NiN@NiFe(OH)-4 catalyst exhibited low overpotentials of 57 and 243 mV at 10 mA cm for the HER and OER in 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:
Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.
View Article and Find Full Text PDFInorg Chem
December 2024
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
Piezoelectric catalytic production of HO is a novel and environmentally friendly HO production method, and many piezoelectric catalysts are currently being developed. However, all of them have the disadvantages of precious metals as cocatalysts and low catalytic efficiency. Herein, CaTiO was successfully prepared and loaded with the nonprecious metal CoP (CoP/CaTiO) for piezoelectric catalytic production of HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!