In this study, we investigated phenol degradation via zero-valent iron (ZVI)-assisted Fenton reaction through kinetic and spectroscopic analysis. In batch experiments, 100 mg/L of phenol was completely degraded, and 75% of TOC was removed within 3 min under an optimal hydrogen peroxide (H2O2) concentration (50 mM) via the Fenton reaction. In the absence of H2O2, oxygen (O2) was dissolved into the solution and produced H2O2, which resulted in phenol degradation. However, phenol removal efficiency was not very high compared to external H2O2 input. The Fenton reaction rapidly occurred at the surface of ZVI, and then phenol mobility from the solution to the ZVI surface was the rate determining step of the whole reaction. The pseudo-second order adsorption kinetic model well describes phenol removal, and its rate increased according to the H2O2 concentration. X-ray absorption spectroscopic analysis revealed that iron oxide (Fe-O bonding) was formed on ZVI with [H2O2] > 50 mM. A high concentration of H2O2 led to rapid degradation of phenol and caused corrosion on the ZVI surface, indicating that Fe(2+) ions were rapidly oxidized to Fe(3+) ions due to the Fenton reaction and that Fe(3+) was precipitated as iron oxide on the ZVI surface. However, ZVI did not show corroded characteristics in the absence of H2O2 due to the insufficient ZVI-assisted Fenton reaction and oxidation of Fe(2+) to Fe(3+).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2015.11.108 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
Ni(II)-hydrazineylpyridine (Ni(II)-PyH)-catalyzed regioselective synthesis of α-benzyl substituted β-hydroxy ketones from α,β-unsaturated ketones and alcohols is reported a Fenton free-radical reaction. This protocol enables facile access to desired products in good to excellent yields in 12 h using toluene solvent at room temperature to 100 °C. The structural analysis of the products was confirmed by H, C-NMR, GC-MS, and HRMS data.
View Article and Find Full Text PDFCell Signal
January 2025
Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China. Electronic address:
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:
Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, MoTiCT@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!