Elevated plasma triglycerides are associated with increased susceptibility to heart disease and stroke, but the mechanisms behind this relationship are unclear. A clearer understanding of gene products which influence plasma triglycerides might help identify new therapeutic targets for these diseases. The Endothelial Cell Surface expressed Chemotaxis and apoptosis Regulator (ECSCR) was initially studied as an endothelial cell marker, but has recently been identified in white adipocytes, the primary storage cell type for triglycerides. Here we confirm ECSCR expression in white adipocytes and show that Ecscr knockout mice show elevated fasting plasma triglycerides. At a cellular level, cultured 3T3-L1 adipocytes silenced for Ecscr show a blunted Akt phosphorylation response. Additionally we show that the phosphatase and tensin homology containing (PTEN) lipid phosphatase association with ECSCR is increased by insulin stimulation. These data suggest a scenario by which ECSCR contributes to control of white adipocyte lipolysis. In this scenario, white adipocytes lacking Ecscr display elevated PTEN activity, thereby reducing AKT activation and impairing insulin-mediated suppression of lipolysis. Collectively, these results suggest that ECSCR plays a critical function in regulating lipolysis in white adipose tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686900PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144185PLOS

Publication Analysis

Top Keywords

white adipocytes
16
endothelial cell
12
plasma triglycerides
12
ecscr
9
cell surface
8
surface expressed
8
expressed chemotaxis
8
chemotaxis apoptosis
8
apoptosis regulator
8
regulator ecscr
8

Similar Publications

In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.

View Article and Find Full Text PDF

Matrix Metalloproteinase-2 as a novel regulator of glucose utilization by adipocytes.

bioRxiv

December 2024

Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States.

Glucose transporter 4 (GLUT4) expression on white adipocytes is critical for absorbing excess blood glucose, failure of which promotes hyperglycemia. Matrix metalloproteinases (MMPs) play a crucial role in remodeling the white adipose tissue (WAT) during obesity. MMPs have multiple protein substrates, and surprisingly, it is unknown if they can directly target GLUT4 on the adipocyte surface and impair glucose absorption.

View Article and Find Full Text PDF

The objective of this omega-3 feeding study was to elucidate the independent effects of α-linolenic acid (ALA) versus eicosapentaenoic (EPA)/docosahexaenoic acid (DHA) on visceral adiposity and inflammatory signaling in diet-induced obese delta-6 desaturase (Fads2) knockout (KO) mice. Male wildtype (WT) and Fads2 KO mice were fed a high-fat diet (45% kcal from fat) containing either lard (no omega-3s), flaxseed (ALA), or menhaden (EPA/DHA) for 21 weeks. Epididymal white adipose tissue (eWAT) was analyzed for changes in tissue weight, adipocyte size, triacylglycerol (TAG) and fatty acid content, and inflammatory markers.

View Article and Find Full Text PDF

We hypothesized that melatonin (Mel) supplementation may offer therapeutic benefits for obesity, particularly in women. Therefore, the study evaluated Mel's effects on white adipose tissue (WAT) in diet-induced obese female mice. Four-week-old C57BL/6 females were assigned to either a control diet (C group) or a high-fat diet (HF group) for 6 weeks (n = 20/group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!