Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), long-lived fluorescence and high singlet oxygen ((1)O2) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and π-π interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 μm, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced (1)O2 production. Considering that (1)O2 is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b07167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!