Phylogenetic resolution of ancient rapid radiations has remained problematic despite major advances in statistical approaches and DNA sequencing technologies. Here we report on a combined phylogenetic approach utilizing transcriptome data in conjunction with Sanger sequence data to investigate a tandem of ancient divergences in the harvestmen superfamily Ischyropsalidoidea (Arachnida, Opiliones, Dyspnoi). We rely on Sanger sequences to resolve nodes within and between closely related genera, and use RNA-seq data from a subset of taxa to resolve a short and ancient internal branch. We use several analytical approaches to explore this succession of ancient diversification events, including concatenated and coalescent-based analyses and maximum likelihood gene trees for each locus. We evaluate the robustness of phylogenetic inferences using a randomized locus sub-sampling approach, and find congruence across these methods despite considerable incongruence across gene trees. Incongruent gene trees are not recovered in frequencies expected from a simple multispecies coalescent model, and we reject incomplete lineage sorting as the sole contributor to gene tree conflict. Using these approaches we attain robust support for higher-level phylogenetic relationships within Ischyropsalidoidea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2015.11.010DOI Listing

Publication Analysis

Top Keywords

gene trees
12
ischyropsalidoidea arachnida
8
arachnida opiliones
8
gene tree
8
tree conflict
8
ancient
5
gene
5
phylogenomic analyses
4
analyses resolve
4
resolve ancient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!