Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b06488 | DOI Listing |
Nano Lett
January 2025
Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.
Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.
View Article and Find Full Text PDFACS Nano
July 2024
POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
We show that hexagonal boron nitride (hBN), a two-dimensional insulator, when subjected to an external superlattice potential forms a paradigm for electrostatically tunable excitons in the near- and mid-ultraviolet (UV). With a combination of analytical and numerical methods, we see that the imposed potential has three consequences: (i) It renormalizes the effective mass tensor, leading to anisotropic effective masses. (ii) It renormalizes the band gap, eventually reducing it.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil.
The description of electronic properties of low bandgap molecular system is often performed by using density functional theory (DFT) and time dependent (TD) DFT calculations with the optimally tuned range-separated hybrid (OT-RSH) functional, as it contains the necessary ingredients to reliably predict charge transfer excitations. However, the range separating parameter (ω) is system-dependent and its optimization, including the chemical environment, is intricate. Refaely-Abramson et al.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2024
Department of Chemistry, University of California Davis, One Shields Ave.. Davis, California 95616, United States.
The electronic properties and optical response of ice and water are intricately shaped by their molecular structure, including the quantum mechanical nature of the hydrogen atoms. Despite numerous previous studies, a comprehensive understanding of the nuclear quantum effects (NQEs) on the electronic structure of water and ice at finite temperatures remains elusive. Here, we utilize molecular simulations that harness efficient machine-learning potentials and many-body perturbation theory to assess how NQEs impact the electronic bands of water and hexagonal ice.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2024
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland.
Methylammonium lead tribromide perovskite (MAPbBr) is an important material, for example, for light-emitting applications and tandem solar cells. The relevant photophysical properties are governed by a plethora of phenomena resulting from the complex and relatively poorly understood interplay of excitons and free charge carriers in the excited state. In this study, we combine transient spectroscopies in the visible and terahertz range to investigate the presence and evolution of excitons and free charge carriers at ultrafast times upon excitation at various photon energies and densities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!